People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shanaghi, Ali
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2021Enhanced corrosion resistance and reduced cytotoxicity of the AZ91 Mg alloy by plasma nitriding and a hierarchical structure composed of ciprofloxacin-loaded polymeric multilayers and calcium phosphate coatingcitations
- 2021Corrosion resistance, nano-mechanical properties, and biocompatibility of Mg-plasma-implanted and plasma-etched Ta/TaN hierarchical multilayered coatings on the nitrided AZ91 Mg alloycitations
- 2021Enhanced corrosion resistance, antibacterial properties, and biocompatibility by hierarchical hydroxyapatite/ciprofloxacin-calcium phosphate coating on nitrided NiTi alloycitations
- 2021Effects of the tantalum intermediate layer on the nanomechanical properties and biocompatibility of nanostructured tantalum/tantalum nitride bilayer coating deposited by magnetron sputtering on the nickel titanium alloycitations
- 2020EIS and noise study of zirconia-alumina- benzotriazole nano-composite coating applied on Al2024 by the sol-gel methodcitations
- 2019Effect of Ti interlayer on corrosion behavior of nanostructured Ti/TiN multilayer coating deposited on TiAl<sub>6</sub>V<sub>4</sub>citations
- 2019Improved corrosion behavior of DLC-coated AZ91 Mg
- 2019Nano-mechanical properties of zirconia-alumina-benzotriazole nano-composite coating deposited on Al2024 by the sol-gel methodcitations
- 2019Effects of Benzotriazole on nano-mechanical properties of zirconia-alumina-Benzotriazole nanocomposite coating deposited on Al 2024 by the sol-gel methodcitations
- 2018Effects of silica and Ag on the electrochemical behavior of titania-based nanocomposite coatings deposited on 2024 aluminum alloy by the sol-gel methodcitations
- 2018Improving of tribology properties of TiAl6V4 with nanostructured Ti/TiN-multilayered coating deposited by high-vacuum magnetron sputteringcitations
- 2017Effect of Inhibitor Agents Addition on Corrosion Resistance Performance of Titania Sol–Gel Coatings Applied on 304 Stainless Steelcitations
- 2017Corrosion behavior of reactive sputtered Ti/TiN nanostructured coating and effects of intermediate titanium layer on self-healing propertiescitations
- 2017Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputteringcitations
- 2012Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopycitations
- 2012Effects of duty cycle on microstructure and corrosion behavior of TiC coatings prepared by DC pulsed plasma CVDcitations
- 2011Improved tribological properties of TiC with porous nanostructured TiO 2 intermediate layercitations
Places of action
Organizations | Location | People |
---|
article
Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering
Abstract
Super-hard coatings are frequently applied to improve the mechanical properties and abrasive properties of light alloys such as titanium and aluminum. In this work, single-layer TiN and multi-layer Ti/TiN coatings are deposited on Al 7075 by ultra-high vacuum magnetron sputtering and the structure, morphology, and triobological properties are investigated. The impact of the Ti layer on the microstructure, mechanical, and abrasive properties are also studied in details. The coatings containing the single TiN layer and Ti/TiN multi-layer crystal have the (111) and (002) preferred orientations. The hardness values of the single-layer and multi-layer coatings are 45.93 and 35.54, which are about 25 and 19 times larger than that of the substrate, respectively. The coefficients of friction of the multi-layer and single-layer coatings are 0.48 and 0.54, respectively. In the multi-layer coating, the Ti interlayer has smaller shear strength and acts as a lubricant during the abrasion test to reduce the friction. The TiAlN<sub>x</sub>O<sub>y </sub>and TiN<sub>x</sub>O<sub>y</sub> tribolayers may be formed in the single-layer and multi-layer coatings, respectively and compared with the single-layer coatings, the multilayer ones have better tribological properties.