People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huang, Fuzhi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2017Low temperature reactively sputtered crystalline TiO2 thin film as effective blocking layer for perovskite solar cellscitations
- 2016Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometrycitations
- 2015Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskitescitations
- 2014Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cellscitations
Places of action
Organizations | Location | People |
---|
article
Low temperature reactively sputtered crystalline TiO2 thin film as effective blocking layer for perovskite solar cells
Abstract
uniform and compact hole blocking layer is necessary for a high performance perovskite solar cells, as it not only serves as an electron collector but also represses the electron recombination by blocking direct contact between the transparent conducting oxide and the perovskite layer. So far, highly performing perovskite solar cells have been achieved using a blocking layer that requires sintering at high temperatures (> 450 °C). In this study, reactive magnetron sputtering was used to synthesise crystalline anatase TiO2 thin film blocking layer at a moderate temperature (150 °C). The influence of block layer thickness on the photovoltaic performance is scrutinised. A high performance of 8.7% power conversion efficiency was obtained for perovskite solar cells with a 76 nm thick TiO2 blocking layer. This low temperature synthesis method will extend the choice of substrate to cheap and flexible polymer substrates. The surface plasma treatment prior to the blocking layer deposition was also found to affect the performance of the solar cells.