People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lunt, Alexander J. G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Influence of the γ/γ′ Misfit on the Strain-Age Cracking Resistance of High-γ′ Ni and CoNi Superalloys for Additive Manufacturing
- 2023The effect of porosity on strain evolution and failure of soldered, small-diameter, thin-walled metallic pipescitations
- 2023The influence of manufacturing on the buckling performance of thin-walled, channel-section CFRP profiles—An experimental and numerical studycitations
- 2023Characterisation of residual stresses and oxides in titanium, nickel, and aluminium alloy additive manufacturing powders via synchrotron X-ray diffractioncitations
- 2022An experimental and numerical study of industrially representative wrinkles in carbon fibre composite laminatescitations
- 2022Advanced Processing and Machining of Tungsten and Its Alloyscitations
- 2022A Novel Low-Cost DIC-Based Residual Stress Measurement Devicecitations
- 2022Carbon fibre lattice strain mapping via microfocus Synchrotron X-ray diffraction of a reinforced compositecitations
- 2020An analysis of fatigue failure mechanisms in an additively manufactured and shot peened IN 718 nickel superalloycitations
- 2020Multi-scale digital image correlation analysis of in situ deformation of open-cell porous ultra-high molecular weight polyethylene foamcitations
- 2019Analysis of Fe(Se,Te) Films Deposited On Unbuffered Invar 36citations
- 2019Investigations into the interface failure of yttria partially stabilised zirconia - porcelain dental prostheses through microscale residual stress and phase quantificationcitations
- 2018Secondary Phases Quantification and Fracture Toughness at Cryogenic Temperature of Austenitic Stainless Steel Welds for High-Field Superconducting Magnets
- 2018Double Cathode Configuration for the Nb Coating of HIE-ISOLDE Cavities
- 2018Nanoscale residual stress depth profiling by Focused Ion Beam milling and eigenstrain analysiscitations
- 2017Eigenstrain reconstruction of residual strains in an additively manufactured and shot peened nickel superalloy compressor bladecitations
- 2016Full in-plane strain tensor analysis using the microscale ring-core FIB milling and DIC approachcitations
- 2016The effect of eigenstrain induced by ion beam damage on the apparent strain relief in FIB-DIC residual stress evaluationcitations
- 2016Mechanical microscopy of the interface between yttria-partially-stabilised zirconia and porcelain in dental prostheses
- 2015A state-of-the-art review of micron-scale spatially resolved residual stress analysis by FIB-DIC ring-core milling and other techniquescitations
- 2015A comparative transmission electron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia - porcelain interface in dental prosthesiscitations
- 2015A review of micro-scale focused ion beam milling and digital image correlation analysis for residual stress evaluation and error estimationcitations
- 2015Microscale resolution fracture toughness profiling at the zirconia-porcelain interface in dental prosthesescitations
- 2015An electron microscopy study of sintering in three dental porcelains
- 2015Tensile secondary creep rate analysis of a dental veneering porcelaincitations
- 2014Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strainscitations
- 2014Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction datacitations
- 2014Intragranular residual stress evaluation using the semi-destructive FIB-DIC ring-core drilling methodcitations
- 2014A study of phase transformation at the surface of a zirconia ceramic
- 2014Nano-scale mapping of lattice strain and orientation inside carbon core SiC fibres by synchrotron X-ray diffractioncitations
- 2014A critical comparison between XRD and FIB residual stress measurement techniques in thin filmscitations
Places of action
Organizations | Location | People |
---|
article
A comparative transmission electron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia - porcelain interface in dental prosthesis
Abstract
Recent studies into the origins of failure of yttria partially stabilised zirconia–porcelain veneered prosthesis have revealed the importance of micro-to-nano scale characterisation of this interface zone. Current understanding suggests that the heat treatment, residual stresses and varying microstructure at this location may contribute to near-interface porcelain chipping. In this study the chemical, microstructural and mechanical property variation across the interfacial zone has been characterised at two differing length scales and using three independent techniques; energy dispersive X-ray spectroscopy, transmission electron microscopy and micropillar compression. Energy dispersive X-ray spectroscopy mapping of the near-interface region revealed, for the first time, that the diffusional lengths of twelve principal elements are limited to within 2–6 μm of the interface. This study also revealed that 0.2–2 μm diameter zirconia grains had become detached from the bulk and were embedded in the near-interface porcelain. Transmission electron microscopy analysis demonstrated the presence of nanoscale spherical features, indicative of tensile creep induced voiding, within the first 0.4–1.5 μm from the interface. Within zirconia, variations in grain size and atomistic structure were also observed within the 3 μm closest to the interface. Micropillar compression was performed over a 100 μm range on either side of the interface at the spatial resolution of 5 μm. This revealed an increase in zirconia and porcelain loading modulus at close proximities (< 5 μm) to the interface and a decrease in zirconia modulus at distances between 6 and 41 μm from this location. The combination of the three experimental techniques has revealed intricate details of the microstructural, chemical and consequently mechanical heterogeneities in the YPSZ–porcelain interface, and demonstrated that the length scales typically associated with this behaviour are approximately ± 5 μm.