People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lotfian, Saeid
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Low electric field induction in BaTiO3-epoxy nanocompositescitations
- 2023Low electric field induction in BaTiO3-epoxy nanocompositescitations
- 2023Effect of initial grain size on microstructure and mechanical properties of in situ hybrid aluminium nanocomposites fabricated by friction stir processingcitations
- 2023Low electric field induction in BaTiO 3 -epoxy nanocomposites
- 2023Bioactive and biodegradable polycaprolactone-based nanocomposite for bone repair applicationscitations
- 2022Development of an injectable shear-thinning nanocomposite hydrogel for cardiac tissue engineeringcitations
- 2022Assessment of mechanical and fatigue crack growth properties of wire + arc additively manufactured mild steel componentscitations
- 2022Mechanical stress measurement using phased array ultrasonic system
- 2022Mechanical Activation-Assisted Solid-State Aluminothermic Reduction of CuO Powders for In-Situ Copper Matrix Composite Fabricationcitations
- 2022Assessment of mechanical and fatigue crack growth properties of wire+arc additively manufactured mild steel componentscitations
- 2021Remanufacturing the AA5052 GTAW welds using friction stir processingcitations
- 2020Effect of multi-pass friction stir processing on textural evolution and grain boundary structure of Al-Fe3O4 systemcitations
- 2019Ultra-thin electrospun nanofibers for development of damage-tolerant composite laminatescitations
- 2019Development of damage tolerant composite laminates using ultra-thin interlaminar electrospun thermoplastic nanofibres
- 2019Towards the use of electrospun piezoelectric nanofibre layers for enabling in-situ measurement in high performance composite laminates
- 2018Electrospun piezoelectric polymer nanofiber layers for enabling in situ measurement in high-performance composite laminatescitations
- 2018Electrospun piezoelectric polymer nanofiber layers for enabling in situ measurement in high-performance composite laminatescitations
- 2018Development of damage tolerant composite laminates using ultra-thin interlaminar electrospun thermoplastic nanofibres
- 2018Towards the use of electrospun piezoelectric nanofibre layers for enabling in-situ measurement in high performance composite laminates
- 2015High temperature nanoindentation response of RTM6 epoxy resin at different strain ratescitations
- 2014Effect of layer thickness on the high temperature mechanical properties of Al/SiC nanolaminatescitations
- 2012High-temperature nanoindentation behavior of Al/SiC multilayerscitations
Places of action
Organizations | Location | People |
---|
article
Effect of layer thickness on the high temperature mechanical properties of Al/SiC nanolaminates
Abstract
Composite laminates on the nanoscale have shown superior hardness and toughness, but little is known about their high temperature behavior. The mechanical properties (elastic modulus and hardness) were measured as a function of temperature by means of nanoindentation in Al/SiC nanolaminates, a model metal–ceramic nanolaminate fabricated by physical vapor deposition. The influence of the Al and SiC volume fraction and layer thicknesses was determined between room temperature and 150 °C and, the deformation modes were analyzed by transmission electron microscopy, using a focused ion beam to prepare cross-sections through selected indents. It was found that ambient temperature deformation was controlled by the plastic flow of the Al layers, constrained by the SiC, and the elastic bending of the SiC layers. The reduction in hardness with temperature showed evidence of the development of interface-mediated deformation mechanisms, which led to a clear influence of layer thickness on the hardness.