Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bodzenta, Jerzy

  • Google
  • 2
  • 8
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Influence of Post Processing on Thermal Conductivity of ITO Thin Films ; ENEngelskEnglishInfluence of Post Processing on Thermal Conductivity of ITO Thin Films11citations
  • 2013Application of scanning microscopy to study correlation between thermal properties and morphology of BaTiO3 thin films20citations

Places of action

Chart of shared publication
Venkatachalapathy, Vishnukanthan
1 / 14 shared
Kaźmierczak-Bałata, Anna
2 / 2 shared
Mayandi, Jeyanthinath
1 / 12 shared
Dehbashi, Mohsen
1 / 1 shared
Juszczyk, Justyna
1 / 2 shared
Firek, Piotr
1 / 19 shared
Szmidt, Jan
1 / 16 shared
Krzywiecki, Maciej
1 / 4 shared
Chart of publication period
2023
2013

Co-Authors (by relevance)

  • Venkatachalapathy, Vishnukanthan
  • Kaźmierczak-Bałata, Anna
  • Mayandi, Jeyanthinath
  • Dehbashi, Mohsen
  • Juszczyk, Justyna
  • Firek, Piotr
  • Szmidt, Jan
  • Krzywiecki, Maciej
OrganizationsLocationPeople

article

Application of scanning microscopy to study correlation between thermal properties and morphology of BaTiO3 thin films

  • Kaźmierczak-Bałata, Anna
  • Juszczyk, Justyna
  • Bodzenta, Jerzy
  • Firek, Piotr
  • Szmidt, Jan
  • Krzywiecki, Maciej
Abstract

We demonstrate the application of the Scanning Thermal Microscopy to quantitative characterization of the thermal properties of barium titanate (BaTiO3) thin films. The results showed that the thermal properties of thin films depend on deposition parameters and can be modified by the annealing of the sample. Microscopic investigations provided information about morphology of non-annealed and annealed layers. The non-annealed layer consists of uniformly distributed, relatively small grains, while in the annealed sample bigger crystallites packed into randomly distributed islands occur. Thermal images revealed that the samples are thermally uniform and, similarly to the atomic force microscopy results, confirmed the grained structure of the annealed sample. The thermal conductivities of BaTiO3 thin films, determined from comparison of measurements carried out for investigated samples and reference samples, were estimated to 4.1 W·m―1·K―1 and 5.3 W·m―1·K―1 for the non-annealed and the annealed samples, respectively.

Topics
  • Deposition
  • grain
  • thin film
  • atomic force microscopy
  • annealing
  • Barium