Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kergommeaux, Antoine De

  • Google
  • 1
  • 4
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013SnS thin films realized from colloidal nanocrystal inks17citations

Places of action

Chart of shared publication
Bettignies, Rémi De
1 / 1 shared
Reiss, Peter
1 / 20 shared
Proń, Adam
1 / 10 shared
Faure-Vincent, Jérôme
1 / 14 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Bettignies, Rémi De
  • Reiss, Peter
  • Proń, Adam
  • Faure-Vincent, Jérôme
OrganizationsLocationPeople

article

SnS thin films realized from colloidal nanocrystal inks

  • Bettignies, Rémi De
  • Kergommeaux, Antoine De
  • Reiss, Peter
  • Proń, Adam
  • Faure-Vincent, Jérôme
Abstract

Tin sulfide (SnS), having a direct band gap of 1.3 eV, is a promising absorber material for solar energy conversion. We synthesized colloidal SnS nanocrystals with a size tuneable from 5 to 20 nm and low size dispersion. These nanocrystals can be processed as thin films using low-cost solution phase methods. They also offer the possibility of controlling the crystalline phase before deposition. With the goal to obtain dense and crack-free films of high conductivity, we used a layer-by-layer deposition technique. In the first step, the substrate was dipped in the nanocrystal colloidal solution (“ink”). Next, exchange of the nanocrystal surface ligands (oleylamine, trioctylphosphine, oleic acid) was carried out by dipping the substrate into a solution of small cross-linking molecules (1,4-benzenedithiol). This exchange enhances the electronic coupling and charge carrier mobilities by reducing the interparticle distance. At the same time it assures the immobilization of the nanocrystals to avoid their removal during subsequent depositions. The thickness of the nanocrystal thin films was controlled in a range of 100–250 nm by varying the number of the alternating nanocrystal deposition and ligand exchange steps. Scanning electron microscopy and atomic force microscopy investigations show that the obtained films are dense and homogeneous with a surface roughness as low as 3 to 4 nm root mean square. Using an inverted structure, the heterojunction of a SnS nanocrystals film with n-type ZnO nanocrystals shows a strongly increased current density under white light irradiation with respect to the dark.© 2012 Elsevier B.V.

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • dispersion
  • surface
  • scanning electron microscopy
  • thin film
  • atomic force microscopy
  • crystalline phase
  • crack
  • current density
  • tin