People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martin, Phil
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Advanced RuO2 Thin Films for pH Sensing Applicationcitations
- 2018Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating filmcitations
- 2018Tuning the Plasmonic Response of TiN Nanoparticles Synthesised by the Transferred Arc Plasma Techniquecitations
- 2018Fabrication of sputtered titanium vanadium nitride (TiVN) thin films for micro-supercapacitorscitations
- 2018Cytocompatible tantalum films on Ti6Al4V substrate by filtered cathodic vacuum arc depositioncitations
- 2017Biomineralisation with Saos-2 bone cells on TiSiN sputtered Ti alloyscitations
- 2016Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applicationscitations
- 2011Mechanical properties and scratch resistance of filtered-arc-deposited titanium oxide thin films on glasscitations
- 2011A review of high throughput and combinatorial electrochemistrycitations
- 2010Multilayered coatings: tuneable protection for metalscitations
Places of action
Organizations | Location | People |
---|
article
Mechanical properties and scratch resistance of filtered-arc-deposited titanium oxide thin films on glass
Abstract
The mechanical properties and the scratch resistance of titanium oxide (TiO2) thin films on a glass substrate have been investigated. Three films, with crystalline (rutile and anatase) and amorphous structures, were deposited by the filtered cathodic vacuum arc deposition technique on glass, and characterized by means of nanoindentation and scratch tests. The different damage modes (arc-like, longitudinal and channel cracks in the crystalline films; Hertzian cracks in the amorphous film) were assessed by means of optical and focused ion beam microscopy. In all cases, the deposition of the TiO2 film improved the contact-mechanical properties of uncoated glass. Crystalline films were found to possess a better combination of mechanical properties (i.e. elastic modulus up to 221 GPa, hardness up to 21 GPa, and fracture strength up to 3.6 GPa) than the amorphous film. However, under cyclic sliding contact above the critical fracture load, the amorphous film was found to withstand a higher number of cycles. The results are expected to provide useful insight for the design of optical coatings with improved contact-damage resistance.