People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Luculescu, C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Synthesis and characterization of W reinforced carbon coatings produced by Combined Magnetron Sputtering and Ion Implantation technique
Abstract
W-containing carbon coatings were deposited on plain carbon steel and titanium substrates by Combined Magnetron Sputtering and Ion Implantation (CMSII) technique. A target made of fine grain graphite with cylindrical tungsten pins mounted in the area of maximum sputtering rate was used. High voltage pulses (-30 kV, 20 mu s, and 25 Hz) were superposed over the DC bias. By adjusting the processing parameters nanocomposite nc-WC1-x/a-C coatings with a W content from 20 to 45 at.%, with a hardness of 12-22 GPa and a friction coefficient in the range of 0.12-0.22 were produced. These coatings have a thickness of 10-13 mu m, good wear resistance and a good thermal stability up to 673 K. (C) 2011 Elsevier B.V. All rights reserved.