Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mewe, Agnes

  • Google
  • 1
  • 4
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2004Ellipsometric characterisation of heterogeneous 2D layers22citations

Places of action

Chart of shared publication
Poelsema, Bene
1 / 9 shared
Rekveld, Sander
1 / 1 shared
Kooij, Ernst Stefan
1 / 17 shared
Wormeester, Herbert
1 / 3 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Poelsema, Bene
  • Rekveld, Sander
  • Kooij, Ernst Stefan
  • Wormeester, Herbert
OrganizationsLocationPeople

article

Ellipsometric characterisation of heterogeneous 2D layers

  • Poelsema, Bene
  • Rekveld, Sander
  • Mewe, Agnes
  • Kooij, Ernst Stefan
  • Wormeester, Herbert
Abstract

Heterogeneous two-dimensional layers have been the subjects of many ellipsometric studies. An unambiguous characterization of especially metal heterogeneous layers is not straightforward. Adsorption of Au nanocolloids leads to a well-defined heterogeneous layer, although the analysis of ellipsometric spectra is not simple. Standard effective medium theories are shown not to be capable of a correct description. The thin island film theory developed by Bedeaux and Vlieger (Optical properties of surface Imperial College Press (2002)), which evaluates a spherical Au colloid as an excess polarizability at the surface, provides a good framework for the analysis. Both the image dipole and the lateral distribution can be incorporated in a straightforward manner. The influence of the change in particle shape from spherical to prolate is evaluated and shows that already a small change in shape leads to large influences in the optical response. This strong effect is due to the influence of shape on the depolarization factors and especially due to the large optical contrast between the Au colloids and the ambient. In contrast to this, the adsorption of the strongly aspherical protein fibrinogen can be analyzed straightforwardly. Only the adsorbed amount of protein on the surface is recorded in-situ. This is the result of the minimal refractive index contrast between proteins and water, which results in a negligible influence of shape on the optical response.

Topics
  • impedance spectroscopy
  • surface
  • theory
  • two-dimensional
  • particle shape