People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Akinwamide, Samuel Olukayode
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Structural integrity and hybrid ANFIS-PSO modeling of the corrosion rate of ductile irons in different environmentscitations
- 2024Characterization of friction stir-based linear continuous joining of aluminium alloy to structural polymercitations
- 2024Densification and corrosion properties of graphite reinforced binderless TiC70N30 ceramic compositescitations
- 2024Tribological properties of graphitized TiC0.5N0.5 based composites using response surface methodologycitations
- 2023Microstructure and biocorrosion studies of spark plasma sintered yttria stabilized zirconia reinforced Ti6Al7Nb alloy in Hanks' solutioncitations
- 2023Nanoindentation and Corrosion Behaviour of 410 Stainless Steel Fabricated Via Additive Manufacturingcitations
- 2023Synthesis and characterization of spark plasma sintered zirconia and ferrotitanium reinforced hybrid aluminium compositecitations
- 2023Synthesis and characterization of spark plasma sintered zirconia and ferrotitanium reinforced hybrid aluminium compositecitations
- 2023Characterization of pulse electric current sintered Ti-6Al-4V ternary composites : Role of YSZ-Si3N4 ceramics addition on structural modification and hydrogen desorptioncitations
- 2023The Effect of TiN-TiB2 on the Microstructure, Wear, and Nanoindentation Behavior of Ti6Al4V-Ni-Cr Matrix Compositescitations
- 2022A Review on Heat Treatment of Cast Iron: Phase Evolution and Mechanical Characterizationcitations
- 2022Insight into tribological and corrosion behaviour of binderless TiCxNy ceramic composites processed via pulsed electric current sintering techniquecitations
- 2022A review on optical properties and application of transparent ceramicscitations
- 2022Alloying effect of copper in AA-7075 aluminum composite using bale out furnacecitations
- 2019A Nanoindentation Study on Al (TiFe-Mg-SiC) Composites Fabricated via Stir Castingcitations
Places of action
Organizations | Location | People |
---|
article
Tribological properties of graphitized TiC0.5N0.5 based composites using response surface methodology
Abstract
Publisher Copyright: © 2024 The Authors ; The statistical design of experimental techniques has been widely explored in developing empirical methodologies. These methods are beneficial for developing appropriate mathematical models to predict the properties and performance of various materials. This study utilized the user-defined design (UDD) approach under response surface methodology (RSM) to achieve the optimum parameters for dry sliding wear properties of graphite-reinforced binderless TiC0.5N0.5 ceramic composites. The tribological tests were performed using a ball-on-flat geometry tribometer, with a ruby- TiC0.5N0.5 friction pair operating in sliding mode at ambient temperature. The developed mathematical model specifies the functional relationship between the key parameters, using the weight percentage of the graphite reinforcement and applied load as input variables and wear rate as the output variable. Based on the statistical analysis, ANOVA results for wear rate indicated that the predictability of the model is at 95 % confidence level. Moreover, the wear rate demonstrated a correlation coefficient of R2 = 0.9762, which depicts that only less than 3 % of the total variations are not explained by the model, and the value of the adjusted determination coefficient (adjusted R2 = 0.9366) is high, proving that the model is significant. ; Peer reviewed