People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Biswas, Abhishek
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024On the grain level deformation of BCC metals with crystal plasticity modeling:Application to an RPV steel and the effect of irradiationcitations
- 2024Analysis of rolling contact and tooth root bending fatigue in a new high-strength steel:Experiments and micromechanical modellingcitations
- 2024On the grain level deformation of BCC metals with crystal plasticity modelingcitations
- 2024Crystal plasticity model for creep and relaxation deformation of OFP coppercitations
- 2024Analysis of rolling contact and tooth root bending fatigue in a new high-strength steel: Experiments and micromechanical modellingcitations
- 2023Estimating Long Term Behaviour Of DED-printed AlCoNiFe Alloy
- 2023Estimating Long Term Behaviour Of DED-printed AlCoNiFe Alloy
- 2023Micromechanical modeling of single crystal and polycrystalline UO2 at elevated temperaturescitations
- 2023Performance Driven Design And Modeling Of Compositionally Complex AM Al-Co-Ni-Fe Alloys
- 2023Performance Driven Design And Modeling Of Compositionally Complex AM Al-Co-Ni-Fe Alloys
- 2023Crystal plasticity model for creep and relaxation deformation of OFP coppercitations
- 2023Experimental Assessment and Micromechanical Modeling of Additively Manufactured Austenitic Steels under Cyclic Loadingcitations
- 2023Micromechanical modeling of single crystal and polycrystalline UO 2 at elevated temperaturescitations
- 2023Predicting anisotropic behavior of textured PBF-LB materials via microstructural modelingcitations
- 2022Micromechanical Modeling of AlSi10Mg Processed by Laser-Based Additive Manufacturing: From as-Built to Heat-Treated Microstructurescitations
- 2022Micromechanical Modeling of AlSi10Mg Processed by Laser-Based Additive Manufacturing: From as-Built to Heat-Treated Microstructures
- 2022A hybrid approach for the efficient computation of polycrystalline yield loci with the accuracy of the crystal plasticity finite element method
- 2022Data-oriented description of texture-dependent anisotropic material behaviorcitations
- 2022Identification of texture characteristics for improved creep behavior of a L-PBF fabricated IN738 alloy through micromechanical simulationscitations
- 2022Micromechanical Modeling of AlSi10Mg Processed by Laser-Based Additive Manufacturing:From as-Built to Heat-Treated Microstructurescitations
- 2020Influence of Pore Characteristics on Anisotropic Mechanical Behavior of Laser Powder Bed Fusion–Manufactured Metal by Micromechanical Modelingcitations
- 2020Study of the influence of microstructural features of 316L stainless steal produced by selective laser melting on its mechanical properties
- 2020Optimized reconstruction of the crystallographic orientation density function based on a reduced set of orientationscitations
- 2020Optimized reconstruction of the crystallographic orientation density function based on a reduced set of orientationscitations
- 2020Effect of grain statistics on micromechanical modeling
- 2020Influence of pore characteristics on anisotropic mechanical behavior of laser powder bed fusion–manufactured metal by micromechanical modelingcitations
- 2019Optimized reconstruction of the crystallographic orientation density function based on a reduced set of orientations
Places of action
Organizations | Location | People |
---|
article
Analysis of rolling contact and tooth root bending fatigue in a new high-strength steel: Experiments and micromechanical modelling
Abstract
To find materials that meet the future requirements of increasing load density in wind turbine gear structures, the commonly used reference material, 18CrNiMo7-6, and another high-strength steel were analysed. Their fatigue properties were studied through rolling contact fatigue (RCF) and gear tooth root bending fatigue (TRBF) tests. The reference steel exhibited better fatigue performance under RCF conditions compared to the new steel; however, it was outperformed by the new steel under TRBF conditions. This study aims to understand gear contact fatigue at the microscopic level, moving beyond the macroscopic focus that dominates current research literature. To establish the causal link between the varied fatigue performance observed in these materials, we proposed a multiscale modelling workflow based on crystal plasticity. This crystal plasticity framework is combined with the fatigue indicator parameter (FIP) to explore the fatigue resistance of materials subjected to RCF and TRBF conditions. Emphasis has been placed on the role of retained austenite (RA) in fatigue performance. Utilizing representative elementary volumes (REVs) generated based on statistically representative crystallographic features and measured size distribution of RA, we examined the effects of various RA levels on fatigue resistance. Our findings reveals that the fatigue damage accumulation is significantly influenced by the level of RA. Different fatigue damage accumulation behaviours were observed under RCF and TRBF conditions. These insights offer new perspectives on RA’s role in fatigue resistance and highlight its complex influence under varied loading conditions.