Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pandit, Hemant

  • Google
  • 3
  • 7
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Engineering tribological rehydration of cartilage interfaces3citations
  • 2023Highly lubricious SPMK-g-PEEK implant surfaces to facilitate rehydration of articular cartilage8citations
  • 2015Tibial Fracture after Unicompartmental Knee Replacement: The Importance of Surgical Cut Accuracycitations

Places of action

Chart of shared publication
Elkington, Robert J.
2 / 2 shared
Bryant, Michael G.
2 / 5 shared
Beadling, Andrew Robert
2 / 4 shared
Hall, Richard M.
2 / 5 shared
Gill, H. S.
1 / 18 shared
Murray, David
1 / 2 shared
Pegg, Elise Catherine
1 / 11 shared
Chart of publication period
2024
2023
2015

Co-Authors (by relevance)

  • Elkington, Robert J.
  • Bryant, Michael G.
  • Beadling, Andrew Robert
  • Hall, Richard M.
  • Gill, H. S.
  • Murray, David
  • Pegg, Elise Catherine
OrganizationsLocationPeople

article

Engineering tribological rehydration of cartilage interfaces

  • Pandit, Hemant
  • Elkington, Robert J.
  • Bryant, Michael G.
  • Beadling, Andrew Robert
  • Hall, Richard M.
Abstract

<p>Articular cartilage, primarily composed of water and collagen, is vital for synovial joint function. Traditional hard biomaterials like ceramic or cobalt-chrome used in hemiarthroplasty often result in abnormal contact pressures and premature implant failure. This study investigates the tribological properties of polyelectrolyte functionalised PEEK (SPMK-g-PEEK) in contact with cartilage, proposing a solution to these issues by utilising tribological rehydration and effective aqueous lubrication. <br/><br/>We demonstrate a new mode of polyelectrolyte enhanced tribological rehydration where SPMK-g-PEEK achieves low friction and promotes interstitial fluid recovery during sliding, independent of traditional hydrodynamic theories. This results in a rapid stabilisation of the coefficient of friction (CoF) to levels comparable to natural cartilage (CoF ∼ 0.01) and aids in approximately 8% cartilage strain recovery, indicating effective tribological rehydration even under cartilage degradation or altered osmotic conditions. <br/><br/>Furthermore, we find that lubrication and rehydration against an SPMK-g-PEEK interface depend minimally on biphasic lubrication but significantly on the hydrophilic sulfonic acid groups of SPMK, which act as a fluid reservoir. Our findings suggest SPMK-g-PEEK as a promising biomaterial for cartilage interfacing implants that offer low friction and modulate cartilage interstitial fluid pressure. This study enhances our understanding of biotribological interactions and contributes to the development of joint replacement materials that support the natural function of cartilage.</p>

Topics
  • impedance spectroscopy
  • cobalt
  • ceramic
  • interstitial
  • biomaterials
  • coefficient of friction