Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hettiarachchi, Sunil Jayantha

  • Google
  • 2
  • 5
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Nanostructured Al2O3/Graphene Additive in Bio-Based Lubricant: A Novel Approach to Improve Engine Performance12citations
  • 2022Enhancing engine oil performance using nanoparticles and bio-lubricants as additivescitations

Places of action

Chart of shared publication
Kellici, Suela
1 / 11 shared
Bowen, D. J.
1 / 1 shared
Kershaw, M.
1 / 1 shared
Baragau, I.
1 / 1 shared
Nicolaev, A.
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Kellici, Suela
  • Bowen, D. J.
  • Kershaw, M.
  • Baragau, I.
  • Nicolaev, A.
OrganizationsLocationPeople

article

Nanostructured Al2O3/Graphene Additive in Bio-Based Lubricant: A Novel Approach to Improve Engine Performance

  • Hettiarachchi, Sunil Jayantha
  • Kellici, Suela
  • Bowen, D. J.
  • Kershaw, M.
  • Baragau, I.
  • Nicolaev, A.
Abstract

Personal and industrial use of internal combustion engines (ICEs) is projected to continue until 2050 and beyond. Yet demands to reduce global dependence on petrochemicals and fossil fuel-derived lubricants are increasing and environmentally necessary. New strategies for maintaining and enhancing ICE performance by reducing friction, wear, fuel consumption, and exhaust emissions will reduce the depletion of mineral and fossil fuel reserves and environmental pollution. This paper reports the tribological enhancement of nano-bio lubricants formulated using 2D nanocomposites of Al2O3/graphene as novel additives in coconut oil, whose performance as a lubricant compares favourably with the mineral-based engine oil 15W40. Structural, compositional, and morphological characterization of an Al2O3/graphene nanocomposite synthesized via thermal annealing revealed an ultra-fine particle size (<10 nm) with spherical/laminar morphology and a rich sp2 domain, exhibiting a consistent colloidal stability when formulated as nanofluid. Through the use of various characterisation techniques, including friction and wear analysis we gained valuable insight into the tribological mechanism. Our optimisation of 2D tribological system using coconut oil formulation resulted significant reductions in the coefficient of friction (28%), specific fuel consumption (8%), and exhaust pollutants (CO, SO2, and NOx) emissions. This work demonstrates the benefits of using nano-bio lubricant formulated using coconut oil and 2D based hybrids as base stock and additives, delivering solutions to global challenges such as improving fuel consumption while reducing environmental pollution; solutions that can be transferred to other areas where lubricants are a necessity.

Topics
  • nanocomposite
  • impedance spectroscopy
  • morphology
  • mineral
  • combustion
  • annealing
  • coefficient of friction
  • ion chromatography