Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Maruda, Radosław W.

  • Google
  • 1
  • 5
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022An insight into the effect surface morphology, processing, and lubricating conditions on tribological properties of Ti6Al4V and UHMWPE pairs19citations

Places of action

Chart of shared publication
Khanna, Navneet
1 / 8 shared
Leksycki, Kamil
1 / 4 shared
Pruncu, Catalin I.
1 / 28 shared
Królczyk, Grzegorz M.
1 / 1 shared
Feldshtein, Eugene
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Khanna, Navneet
  • Leksycki, Kamil
  • Pruncu, Catalin I.
  • Królczyk, Grzegorz M.
  • Feldshtein, Eugene
OrganizationsLocationPeople

article

An insight into the effect surface morphology, processing, and lubricating conditions on tribological properties of Ti6Al4V and UHMWPE pairs

  • Khanna, Navneet
  • Leksycki, Kamil
  • Maruda, Radosław W.
  • Pruncu, Catalin I.
  • Królczyk, Grzegorz M.
  • Feldshtein, Eugene
Abstract

<p>The effects of surface topography, processing, and environment conditions during tribological contact between Ti6Al4V titanium alloy and UHMWPE friction pairs were systematically evaluated. Hence, in this research the polyethylene samples (blocks) having a constant surface roughness were rubbed against counter-bodies (rollers) made of titanium alloy with different roughness of surfaces. The counter-samples were manufactured using either dry machining and/or minimum quantity lubrication (MQL) conditions. Such cutting conditions are harmless to humans and the environment. Simulated body fluid (SBF) and distilled water was used to simulate the tribological trials. We have noted that the lubricant applied to protect the integrity of machined parts, the rollers, have only minor impact on the tribological features of the friction pairs tested. Further, the samples produced with dry machining demonstrated a slightly lower momentary friction coefficient and temperature. In contrast, the MQL method enable reduced friction surface and significant wear accumulation. Further, it was found that the minimum and maximum values of the Sa texture parameter associated to tribological parameters do not exceed 21% and 4%, when is used dry and MQL methods, respectively. Nevertheless, the distilled water revealed a much better wear resistance when comparing to SBF, and the later one trigger as well as an accentuated wear progress with different patterns. The results of the study are important in the design of new biomedical components produced by finish turning.</p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • wear resistance
  • texture
  • titanium
  • titanium alloy