People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hazrati, Javad
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023The effect of heating stage parameters on AlSi coating microstructure and fracture at high temperaturescitations
- 2022Surface Texture Design for Sheet Metal Forming Applicationscitations
- 2021Investigating AlSi coating fracture at high temperatures using acoustic emission sensorscitations
- 2021Numerical and experimental studies of AlSi coating microstructure and its fracture at high temperaturescitations
- 2021Modeling boundary friction of coated sheets in sheet metal formingcitations
- 2021Mixed lubrication friction model including surface texture effects for sheet metal formingcitations
- 2020Characterization of yield criteria for zinc coated steel sheets using nano-indentation with knoop indentercitations
- 2020Semi-analytical contact model to determine the flattening behavior of coated sheets under normal loadcitations
- 2020Analytical, numerical and experimental studies on ploughing behaviour in soft metallic coatingscitations
- 2019Characterization of interfacial shear strength and its effect on ploughing behaviour in single-asperity slidingcitations
- 2019Modelling of ploughing in a single-asperity sliding contact using material point methodcitations
- 2018Temperature dependent micromechanics-based friction model for cold stamping processescitations
- 2018Modeling crack initiation in Al-Si coating during heating/quenching phase of hot stamping process
- 2018The effects of temperature on friction and wear mechanisms during direct press hardening of Al-Si coated ultra-high strength steelcitations
- 2018An insight in friction and wear mechanisms during hot stampingcitations
- 2017Plasticity and fracture modeling of three-layer steel composite Tribond® 1200 for crash simulation
- 2017Friction and Wear Mechanisms During Hot Stamping of AlSi Coated Press Hardening Steelcitations
Places of action
Organizations | Location | People |
---|
article
Semi-analytical contact model to determine the flattening behavior of coated sheets under normal load
Abstract
<p>Friction influences the formability in sheet metal forming processes. It depends on the local contact condition between tool and sheet metal. Therefore, precise estimation of real area of contact is the first step for an accurate prediction of friction. In this study, a multi-scale contact model is developed to predict deformation of asperities on a rough uncoated and coated surfaces under normal load. The model accounts for the coating thickness and material behavior of coating and substrate. Finite element simulations are performed to determine the contact pressure of single asperities of different sizes. These are used to determine the real area of contact. The model is validated relative to the experiments performed on uncoated and zinc coated steel sheets.</p>