People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sinnaeve, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2019Laser metal deposition of vanadium-rich high speed steel: Microstructuraland high temperature wear characterizationcitations
- 2019Wear characterization of multilayer laser cladded high speed steelscitations
- 2018Wear characterization of thick laser cladded high speed steel coatings
- 2018Development and characterization of multilayer laser cladded high speed steelscitations
- 2015Modelling of stress field evolution in bimetallic rolling mill rolls during the manufacturing process
Places of action
Organizations | Location | People |
---|
article
Wear characterization of multilayer laser cladded high speed steels
Abstract
<p>The wear behavior of three laser clad high speed steel (HSS) alloys and one conventional spun cast HSS alloy was investigated by using a pin on disc tribometer at 25 °C and 500 °C. The wear mechanism was found to be the combined effect of abrasive, adhesive and tribo-oxidative wear, with the latter becoming more prominent at 500 °C. Due to refined microstructures with higher hardness, laser clad HSS alloys showed superior wear resistance at 25 °C. However, at 500 °C in-spite of the cracking of MC carbides, the cast HSS alloy showed the best wear resistance. With superior anchorage, the coarse MC carbides carried the load, enabling the matrix to form a stable oxide layer to resist the wear.</p>