People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rahmani, Ramin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Structural analysis of selective laser melted copper-tin alloycitations
- 2023Additive Manufacturing Integrated Technologies Applied to Human Machine Interfaces: An Industry 5.0 Overview
- 2023Overview of Selective Laser Melting for Industry 5.0: Toward Customizable, Sustainable, and Human-Centric Technologiescitations
- 2022Hybrid metal-ceramic biomaterials fabricated through powder bed fusion and powder metallurgy for improved impact resistance of craniofacial implantscitations
- 2022Solid Lubrication at High-Temperatures—A Reviewcitations
- 2022Phi 6 Bacteriophage Inactivation by Metal Salts, Metal Powders, and Metal Surfacescitations
- 2021The Impact Resistance of Highly Densified Metal Alloys Manufactured from Gas-Atomized Pre-Alloyed Powderscitations
- 2019Mechanical Behavior of Ti6Al4V Scaffolds Filled with CaSiO3 for Implant Applicationscitations
- 2019Comparison of Mechanical and Antibacterial Properties of TiO2/Ag Ceramics and Ti6Al4V-TiO2/Ag Composite Materials Using Combined SLM-SPS Techniquescitations
- 2019Selective Laser Melting of Diamond-Containing or Postnitrided Materials Intended for Impact-Abrasive Conditions: Experimental and Analytical Studycitations
- 2019Selective Laser Melting of Diamond-Containing or Postnitrided Materials Intended for Impact-Abrasive Conditions: Experimental and Analytical Studycitations
- 2019Wear Resistance of (Diamond-Ni)-Ti6Al4V Gradient Materials Prepared by Combined Selective Laser Melting and Spark Plasma Sintering Techniquescitations
- 2018Asperity level tribological investigation of automotive bore material and coatingscitations
- 2017Asperity level tribological investigation of automotive bore material and coatings
Places of action
Organizations | Location | People |
---|
article
Asperity level tribological investigation of automotive bore material and coatings
Abstract
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). ; Choosing in-cylinder surfaces is complex. A well-chosen surface has low friction and wear. Conversely, poor oversight often leads to premature failure through wear and scuffing. Typically cylinder bore surfaces are selected experientially. This paper demonstrates the use of Atomic Force Microscopy in LFM mode, characterising typical cylinder bore materials and coatings. The approach uses integrated LFM with continuum contact mechanics. It evaluates the real contact area and effective elastic modulus of the surface, including the effect of any reactive surface film. Surface energy and shear strength, as well as the coefficient of friction in nanoscale interactions are also determined. These properties are measured for 6 cylinder bore materials, including for composite Nickel-Silicon Carbide and DLC, used for high performance engines.