People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ehiasarian, Arutiun
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2022Real-time monitoring of plasma synthesis of functional materials by high power impulse magnetron sputtering and other PVD processes: towards a physics-constrained digital twincitations
- 2021Improving the Quality of Friction Stir Welds in Aluminium Alloyscitations
- 2021Improving the Quality of Friction Stir Welds in Aluminium Alloyscitations
- 2021Correlation between the microstructure and corrosion performance of the HIPIMS nitrided bio-grade CoCrMo alloycitations
- 2021A new approach towards performing plasma nitriding of CrCoMo medical grade alloys using HIPIMS dischargecitations
- 2021TiN/NbN nanoscale multilayer coatings deposited by High Power Impulse Magnetron Sputtering to protect medical grade CoCrMo alloyscitations
- 2021TiN/NbN Nanoscale Multilayer Coatings Deposited by High Power Impulse Magnetron Sputtering to Protect Medical-Grade CoCrMo Alloyscitations
- 2020Dry sliding wear mechanisms of HIPIMS plasma nitrided CoCrMo alloy for medical implant applicationscitations
- 2020Low pressure plasma nitrided CoCrMo alloy utilising HIPIMS discharge for biomedical applicationscitations
- 2020Effect of Nitriding Voltage on the Impact Load Fatigue and Fracture Toughness Behaviour of CoCrMo Alloy Nitrided Utilising a HIPIMS Dischargecitations
- 2019Cavitation erosion performance of CrAlYN/CrN nanoscale multilayer coatings deposited on Ti6Al4V by HIPIMScitations
- 2018Long-term behaviour of Nb and Cr nitrides nanostructured coatings under steam at 650°C. Mechanistic considerations.citations
- 2017Substrate finishing and niobium content effects on the high temperature corrosion resistance in steam atmosphere of CrN/NbN superlattice coatings deposited by PVD-HIPIMScitations
- 2017Corrosion behaviour of post-deposition polished droplets-embedded arc evaporated and droplets-free HIPIMS/DCMS coatingscitations
- 2017Tribological response and characterization of Mo–W doped DLC coatingcitations
- 2016Performance of HIPIMS deposited CrN/NbN nanostructured coatings exposed to 650°C in pure steam environmentcitations
- 2016Study of the Effect of RF-power and process pressure on the morphology of copper and titanium sputtered by ICIScitations
- 2015Tribological behaviour of Mo − W doped carbon-based coating at ambient conditioncitations
- 2015Tribological behaviour of Mo − W doped carbon-based coating at ambient conditioncitations
- 2014Lubricated sliding wear mechanism of chromium-doped graphite-like carbon coatingcitations
- 2014Lubricated sliding wear mechanism of chromium-doped graphite-like carbon coatingcitations
- 2014Structure evolution and Properties of TiAlCN/VCN Coatings Deposited by Reactive HIPIMScitations
- 2014ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques.citations
- 2012A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS)citations
- 2011Structure and properties of ZrN coatings deposited by high power impulse magnetron sputtering technologycitations
Places of action
Organizations | Location | People |
---|
article
Tribological behaviour of Mo − W doped carbon-based coating at ambient condition
Abstract
Poor adhesion strength and low thermal stability often restrict the tribological applications of the state-of-the-art diamond-like-carbon coatings in automotive industry. A novel carbon-based coating doped with molybdenum and tungsten (Mo−W−C) is deposited using the advantages of HIPIMS to overcome these limitations and to provide enhanced tribological performance. Low friction (µ=0.335 against steel counterpart) and high wear resistance (Kc=3.87×10-16 m3N-1m-1) are observed after 7.5 km sliding distance and the coating remains intact within the wear track after sliding. It is concluded that the tribological performance of Mo−W−C coating at ambient condition excels due to its dense microstructure, interfacial adhesion strength and in-situ formation of solid lubricants such as graphitic carbon particles, MoO3 and Magnéli phase oxides of molybdenum and tungsten in the transfer layer during sliding.