People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Muñoz, Jose
Universitat Autònoma de Barcelona
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Heterolayered carbon allotrope architectonics via multi-material 3D printing for advanced electrochemical devicescitations
- 2021Green activation using reducing agents of carbon-based 3D printed electrodes: Turning good electrodes to greatcitations
- 2021Chiral 3D-Printed Bioelectrodescitations
- 20200D polymer nanocomposite carbon-paste electrodes using carbon nanohornscitations
- 2020Electronic Performance of Polymer Carbon‐Paste Nanoallotropes from 0D to 3D as Novel Gate Electrodes in Water‐Gated Organic Field‐Effect Transistorscitations
- 2018Chiral magnetic-nanobiofluids for rapid electrochemical screening of enantiomers at a magneto nanocomposite graphene-paste electrodecitations
- 2018Carbon nanotube-based nanocomposite sensor tuned with a catechol as novel electrochemical recognition platform of uranyl ion in aqueous samplescitations
- 2017Customized Bio-functionalization of Nanocomposite Carbon Paste Electrodes for Electrochemical Sensing: A Mini Reviewcitations
- 2017Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensingcitations
- 2016Characterization protocol to improve the electroanalytical response of graphene-polymer nanocomposite sensorscitations
- 2016Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrincitations
- 2016Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dotscitations
- 2016CdS quantum dots as a scattering nanomaterial of carbon nanotubes in polymeric nanocomposite sensors for microelectrode array behaviorcitations
- 2016Intermatrix synthesis of Ag, AgAu and Au nanoparticles by the galvanic replacement strategy for bactericidal and electrocatalytically active nanocompositescitations
- 2015Modified multiwalled carbon nanotube/epoxy amperometric nanocomposite sensors with CuO nanoparticles for electrocatalytic detection of free chlorinecitations
- 2015Effect of carbon nanotubes purification on electroanalytical response of near-percolation amperometric nanocomposite sensorscitations
Places of action
Organizations | Location | People |
---|
article
Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing
Abstract
© 2017 Elsevier B.V. Electrochemical Impedance Spectroscopy (EIS) has gained widespread application for the characterization of functionalized electrode surfaces and for the transduction of bio-sensing events. However, bio-sensors using EIS detection have to be carefully designed to minimize non-specific binding of the analyte. In this sense, surface engineering by using nanocomposite materials (NCs) is advantageous due to the increased electrode surface area, improved electrical conductivity of the sensing interface, chemical accessibility to the analyte and electroanalysis. Accordingly, this review summarizes the basis of the EIS technique as well as its implementation not only in common Faradaic EIS (impedimetric) bio-sensors using NCs as highly sensitive transducer platforms but also in not so conventional non-Faradaic EIS (capacitive) approaches. Finally, it is also highlighted the feasibility of EIS as an alternative characterization tool towards the optimization of NC electrodes in terms of loading ratios for electroanalytical improvements, summarizing the latest promising results in nanocomposite carbon paste electrodes.