People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Candelier, Kévin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Heat treatment of poplar plywood: modifications in physical, mechanical and durability propertiescitations
- 2021Assessment of catalytic torrefaction promoted by biomass potassium impregnation through performance indexescitations
- 2021A potassium responsive numerical path to model catalytic torrefaction kineticscitations
- 2020Anti-fungal and anti-termite activity of extractives compounds from thermally modified ash woodscitations
- 2019Termite and decay resistance of bioplast-spruce green wood-plastic compositescitations
- 2018Comparative study of local Tunisian woods properties and the respective qualities of their charcoals produced by a new industrial eco-friendly carbonization processcitations
- 2017Some physical and mechanical characterization of Tunisian planted #Eucalytus loxophleba# and #Eucalyptus salmonophloia# woods
- 2017Developing biocomposites panels from food packaging and textiles wastes: Physical and biological performancecitations
- 2017Resistance of thermally modified ash (#Fraxinus excelsior# L.) wood under steam pressure against rot fungi, soil-inhabiting micro-organisms and termitescitations
- 2016Study on chemical oxidation of heat treated lignocellulosic biomass under oxygen exposure by STA-DSC-FTIR analysiscitations
- 2016Control of wood thermal treatment and its effects on decay resistance: a reviewcitations
- 2015Heat treatment of tunisian soft wood species: effect on the durability, chemical modifications and mechanical propertiescitations
- 2015Impact of location and forestry conditions on some physical and mechanical properties of northern Tunisian #Pinus pinea# L. woodcitations
- 2015Mechanical characterization of heat-treated ash wood in relation with structural timber standards
- 2015Utilization of temperature kinetics as a method to predict treatment intensity and corresponding treated wood quality: Durability and mechanical properties of thermally modified woodcitations
- 2014Advantage of vacuum versus nitrogen to achieve inert atmosphere during softwood thermal modification
- 2013Utilization of TG-DSC to study thermal degradation of beech and silver fir
- 2013Effect of the nature of the inert atmosphere used during thermal treatment on chemical composition, decay durability and mechanical properties of wood
- 2013Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: Nitrogen or vacuumcitations
- 2013Comparison of mechanical properties of heat treated beech wood cured under nitrogen or vacuumcitations
Places of action
Organizations | Location | People |
---|
article
Study on chemical oxidation of heat treated lignocellulosic biomass under oxygen exposure by STA-DSC-FTIR analysis
Abstract
Heat treatment helps enhance some properties of raw biomass by improving its decay resistance, its dimensional stability, increasing energy density and reducing transport costs of biomass. During storage period, many industrial sites undergo fires caused by self-ignition of torrefied or carbonized biomass. The main objective of this work was to study the chemical behavior of heat treated wood under oxygen exposure. Softwood and hardwood species have been thermally treated under a nitrogen atmosphere at different treatment conditions intensities. Sample mass and heat flow have been measured during the process to observe the temperature, time and air flow influence on reaction mechanisms of heat treated wood. The oxidation process and heat flux have been evaluated in addition. Results showed that reaction heat flows used for the treatment were correlated with temperature and time of thermal degradation of both examined wood species, as well as wood mass loss, respectively. However, hardwood (beech) seems to be more sensitive to thermal degradation and oxidation than softwood (silver fir) species. In addition, differential scanning calorimetry exothermic peak and wood mass gain were observed during oxygen exposure. In fact, this phenomenon was more pronounced for degradation carried out at high temperatures and times and it tends to be correlated with the elemental composition of wood. The main evolved products of heat treated wood were identified as water (H2O), carbon monoxide (CO) and carbon dioxide (CO2).