People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rosa, Frédéric
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Crystal structure determination and thermal behavior upon melting of p-synephrine
Abstract
The crystal structure of p-synephrine was solved from a high-resolution X-ray powder diffraction pattern optimized by energy-minimization calculations using the Dreiding force field. The title compound crystallizes in a monoclinic system (space group P2 1 /c, Z = 4, with a = 8.8504(11) Å, b = 12.1166(15) Å, c = 9.7820(11) Å,  = 122.551(2) • , V = 884.21(19) Å 3 and d = 1.256 g cm −3). Since p-synephrine degrades upon melting, its melting data were determined from DSC experiments carried out as a function of the heating rate. This method allowed determining a melting temperature and enthalpy equal to 199.8 ± 1.3 • C and 57 ± 3 kJ mol −1 , respectively.