People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Frost, Ray
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2020Volatilisation of trace elements during reduction of iron ore by hydrogencitations
- 2019Elemental deportment and chemical structure evolution of iron ore during direct reduction in hydrogen atmosphere
- 2016Environmental applications of inorganic-organic clays for recalcitrant organic pollutants removal: Bisphenol Acitations
- 2014Vibrational spectroscopy of the sulphate mineral sturmanite from Kuruman manganese deposits, South Africacitations
- 2014Infrared and raman spectroscopic characterization of the borate mineral vonsenite Fe2/2+ Fe3+BO5citations
- 2014A vibrational spectroscopic study of the phosphate mineral churchite (REE)(PO4).2H2Ocitations
- 2013Vibrational spectroscopic characterization of the phosphate mineral kulanite Ba(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3citations
- 2013Vibrational spectroscopic characterization of the phosphate mineral series eosphorite-childrenite-(Mn,Fe)Al(PO4)(OH)2.(H2O)citations
- 2013The phosphate mineral arrojadite-(KFe) and its spectroscopic characterizationcitations
- 2013Vibrational spectroscopic characterization of the phosphate mineral phosphophyllite - Zn2Fe(PO4)2.4H2O, from Hagendorf Sud, Germany and in comparison with other zinc phosphatescitations
- 2012Thermal analysis and application of organoclays for water purification
- 2012Raman and infrared spectroscopic characterization of beryllonite, a sodium and beryllium phosphate mineral - implications for mineral collectorscitations
- 2011Characterisation of organoclays and adsorption of p-nitrophenol: Environmental applicationcitations
- 2011Synthesis and vibrational spectroscopy of halotrichite and bilinitecitations
- 2009Thermal decomposition of hydrotalcites with variable cationic ratioscitations
- 2008Thermal decomposition of synthesized layered double hydroxides based upon Mg/(Fe,Cr) and carbonatecitations
- 2008Thermal decomposition of hydrotalcite with molybdate and vanadate anions in the interlayercitations
- 2008Characterisation of red mud and seawater neutralised red mud using vibrational spectroscopic techniques
Places of action
Organizations | Location | People |
---|
article
Thermal decomposition of synthesized layered double hydroxides based upon Mg/(Fe,Cr) and carbonate
Abstract
Thermal analysis complimented with evolved gas mass spectrometry has been applied to hydrotalcites of the pyroaurite-stitchtite series containing the carbonate anion prepared by co-precipitation and with varying Fe3+,Cr3+ trivalent cation ratio. The resulting materials were characterized by XRD, and TGA/DTG to determine the stability of the hydrotalcites synthesised. Hydrotalcites of formula Mg6(Cr0.8,Fe0.2)2(OH)16(CO3).xH2O, Mg6(Cr0.6,Fe0.4)2(OH)16(CO3).xH2O, Mg6(Cr0.4,Fe0.6)2(OH)16(CO3).xH2O and Mg6(Cr0.2,Fe0.8)2(OH)16(CO3).xH2O formed by intercalation with the carbonate anion as a function of Fe3+,Cr3+ trivalent cationic ratio show variation in the d-spacing attributed to the size of the cation.The thermal decomposition of stitchtite-pyroaurite solid solutiona) removal of adsorbed water (< 100 degrees Celsius),b) elimination of the interlayer structural water (100 – 150 degrees Celsius), andc) the simultaneous dehydroxylation and decarbonation of the hydrotalcite framework (300 – 400 degrees Celsius).The effect of replacement of Cr3+ by Fe3+ has no effect on the dehydroxylation temperature. The ion current curves provide evidence for the formation of Fe3+ and Cr3+ carbonates during dehydroxylation. Dehydroxylation results in the collapse of the hydrotalcite structure to that of its corresponding metal oxides, and results in the formation of spinels, including MgO, MgFe2O4, MgCr2O4, and MgFeAlO4.