Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gorny, Josselin

  • Google
  • 1
  • 6
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Passive sampler measurements of inorganic arsenic species in environmental waters: A comparison between 3-mercapto-silica, ferrihydrite, Metsorb®, zinc ferrite, and zirconium dioxide binding gels9citations

Places of action

Chart of shared publication
Alaimo, Véronique
1 / 2 shared
Billon, Gabriel
1 / 2 shared
Dumoulin, David
1 / 1 shared
Noiriel, Catherine
1 / 2 shared
Madé, Benoît
1 / 4 shared
Lesven, Ludovic
1 / 5 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Alaimo, Véronique
  • Billon, Gabriel
  • Dumoulin, David
  • Noiriel, Catherine
  • Madé, Benoît
  • Lesven, Ludovic
OrganizationsLocationPeople

article

Passive sampler measurements of inorganic arsenic species in environmental waters: A comparison between 3-mercapto-silica, ferrihydrite, Metsorb®, zinc ferrite, and zirconium dioxide binding gels

  • Alaimo, Véronique
  • Billon, Gabriel
  • Dumoulin, David
  • Noiriel, Catherine
  • Madé, Benoît
  • Lesven, Ludovic
  • Gorny, Josselin
Abstract

The performances of five Diffusive Gradients in Thin Films (DGT) binding gels, namely 3-mercapto-functionalized silica (3MP), ferrihydrite (Fh), Metsorb®, zinc ferrite (ZnFe2O4), and Zirconium oxide (ZrO2), were evaluated for in situ determination of As speciation in water and sediments. A combination of batch experiments at various pH (without addition of buffers) and in the presence of reduced species (Mn2+, Fe2+ and HS-),time-series experiments in oxic waters, and in situ deployment in anoxic river sediments has permitted to evaluate the potential interferences among the binding gels. Firstly, the efficiency of each DGT binding gel dedicated to total As (i.e., Fh, Metsorb®, ZnFe2O4 and ZrO2) or As(III) (i.e., 3MP) determination confirms that the determination of As species is possible in oxic freshwater and seawater over 96 h for a wide range of pH (5−9). Secondly, concerning the deployment in river sediment, high HCO3- concentrations have a little negative effect only on the DGT performances of the iron(III)-binding gels (i.e, Fh and ZnFe2O4). Thirdly, the presence of sulfides does not show any effect on the DGT uptake of As, but strongly affects the elution factor parameter. Discrepancies in elution between the different binding gels potentially result in precipitation of orpiment, especially in 1 mol L−1 HNO3. A correction of the classical elution factor derived from batch experiments was applied to provide more representative results. Finally, this study shows the difficulties to determine As speciation in anoxic sediments, and suggests that corrections of the elution factor may be required as a function of the species present in the deployment matrices.

Topics
  • impedance spectroscopy
  • experiment
  • thin film
  • zinc
  • zirconium
  • precipitation
  • iron
  • Arsenic
  • elution
  • zirconium dioxide