People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Delerue Matos, C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022p A simple electrochemical detection of atorvastatin based on disposable screen-printed carbon electrodes modified by molecularly imprinted polymer: Experiment and simulationcitations
- 2020Azithromycin electrochemical detection using a molecularly imprinted polymer prepared on a disposable screen-printed electrodecitations
- 2019Electrochemical sensing of the thyroid hormone thyronamine (T(0)AM) via molecular imprinted polymers (MIPs)citations
- 2019Development of a disposable paper-based potentiometric immunosensor for real-time detection of a foodborne pathogencitations
- 2018Electrochemical genoassays on gold-coated magnetic nanoparticles to quantify genetically modified organisms (GMOs) in food and feed as GMO percentagecitations
- 2017PMo11V@N-CNT electrochemical properties and its application as electrochemical sensor for determination of acetaminophencitations
- 2014Sensitive bi-enzymatic biosensor based on polyphenoloxidases-gold nanoparticles-chitosan hybrid film-graphene doped carbon paste electrode for carbamates detectioncitations
- 2013Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantificationcitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical sensing of the thyroid hormone thyronamine (T(0)AM) via molecular imprinted polymers (MIPs)
Abstract
Recent studies have shown that besides the well-known T-3 (triiodothyronine) and T-4 (thyroxine) there might be other important thyroid hormones, in particular T(0)AM (thyronamine) and T(1)AM (3-iodothyronamine). The absence of a large number of studies showing their precise importance might be explained by the limited number of analytical methodologies available. This work aims to show an electroanalytical alternative making use of electropolymerized molecularly imprinted polymer (MIPs). The MIPs' polymerization is performed on the surface of screen-printed carbon electrodes (SPCEs), using 4-aminobenzoic acid (4-ABA) as the building and functional monomer and the analyte T(0)AM as the template. The step-by-step construction of the SPCE-MIP sensor was studied by cyclic voltammetry (CV) and by electrochemical impedance spectroscopy (EIS). After optimization, by means of square-wave voltammetry, the SPCE-MIP showed suitable selectivity (in comparison with other thyroid hormones and catechol amines), repeatability (intra-day of 3.9%), a linear range up to 10 mu mol L-1 (0.23 x 10(3) mu g dL(-1)) with an r(2) of 0.998 and a limit of detection (LOD) and quantification (LOQ) of 0.081 and 0.27 mu mol L-1 (L9 and 6.2 mu g dL(-1)), respectively.