Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Campos, Bb

  • Google
  • 11
  • 26
  • 327

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2016Characterization of cellulose membranes modified with luminescent silicon quantum dots nanoparticles12citations
  • 2016Strontium-rich injectable hybrid system for bone regeneration31citations
  • 2015ZnS:Mn nanoparticles functionalized by PAMAM-OH dendrimer based fluorescence ratiometric probe for cadmium9citations
  • 2013Solid luminescent CdSe-thiolated porous phosphate heterostructures. Application in fingermark detection in different surfaces18citations
  • 2013Inclusion of thiol DAB dendrimer/CdSe quantum dots based in a membrane structure: Surface and bulk membrane modification9citations
  • 2012Thiolated DAB dendrimer/ZnSe nanoparticles for C-reactive protein recognition in human serum15citations
  • 2012Thiolated DAB dendrimers and CdSe quantum dots nanocomposites for Cd(II) or Pb(II) sensing53citations
  • 2011CdS nanocomposites assembled in porous phosphate heterostructures for fingerprint detection46citations
  • 2011CdSe quantum dots capped PAMAM dendrimer nanocomposites for sensing nitroaromatic compounds58citations
  • 2010Fluorescent Properties of a Hybrid Cadmium Sulfide-Dendrimer Nanocomposite and its Quenching with Nitromethane32citations
  • 2009Mercury(II) sensing based on the quenching of fluorescence of CdS-dendrimer nanocomposites44citations

Places of action

Chart of shared publication
Vazquez, Mi
1 / 1 shared
Gelde, L.
1 / 3 shared
Esteves Da Silva, Jcge
9 / 18 shared
Benavente, J.
2 / 4 shared
Algarra, M.
10 / 18 shared
Cabral, At
1 / 1 shared
Costa, Pc
1 / 2 shared
Almeida, If
1 / 2 shared
Neves, N.
1 / 10 shared
Barbosa, Ma
1 / 6 shared
Ribeiro, Cc
1 / 1 shared
Mutavdzic, D.
1 / 2 shared
Radotic, K.
1 / 2 shared
Rodriguez Castellon, E.
2 / 8 shared
Alonso, B.
5 / 7 shared
Jimenez Jimenez, J.
3 / 7 shared
Esteves Da Silva, Jcg
1 / 1 shared
Casado, Cm
5 / 5 shared
Miranda, Ms
3 / 4 shared
Moreno Tost, R.
2 / 2 shared
Diez De Los Rios, Mjd
1 / 1 shared
Arrebola, Mm
1 / 1 shared
Seller Perez, G.
1 / 1 shared
Herrera Gutierrez, Me
1 / 1 shared
Gomes, D.
1 / 8 shared
Martinez, Am
1 / 1 shared
Chart of publication period
2016
2015
2013
2012
2011
2010
2009

Co-Authors (by relevance)

  • Vazquez, Mi
  • Gelde, L.
  • Esteves Da Silva, Jcge
  • Benavente, J.
  • Algarra, M.
  • Cabral, At
  • Costa, Pc
  • Almeida, If
  • Neves, N.
  • Barbosa, Ma
  • Ribeiro, Cc
  • Mutavdzic, D.
  • Radotic, K.
  • Rodriguez Castellon, E.
  • Alonso, B.
  • Jimenez Jimenez, J.
  • Esteves Da Silva, Jcg
  • Casado, Cm
  • Miranda, Ms
  • Moreno Tost, R.
  • Diez De Los Rios, Mjd
  • Arrebola, Mm
  • Seller Perez, G.
  • Herrera Gutierrez, Me
  • Gomes, D.
  • Martinez, Am
OrganizationsLocationPeople

article

Thiolated DAB dendrimers and CdSe quantum dots nanocomposites for Cd(II) or Pb(II) sensing

  • Miranda, Ms
  • Martinez, Am
  • Campos, Bb
  • Esteves Da Silva, Jcge
  • Alonso, B.
  • Casado, Cm
  • Algarra, M.
Abstract

Four different generation of thiol-DAB dendrimers were synthesized, S-DAB-G(x) (x = 1, 2, 3 and 5), and coupled with CdSe quantum dots, to obtain fluorescent nanocomposites as metal ions sensing. Cd(II) and Pb(II) showed the higher enhancement and quenching effects respectively towards the fluorescence of S-DAB-G(5)-CdSe nanocomposite. The fluorescence enhancement provoked by Cd(II) can be linearized using a Henderson-Hasselbalch type equation and the quenching provoked by Pb(II) can be linearized by a Stern-Volmer equation. The sensor responds to Cd(II) ion in the 0.05-0.7 mu M concentration range and to Pb(II) ion in the 0.01-0.15 mM concentration range with a LOD of 0.06 mM. The sensor has selectivity limitations but its dendrimer configuration has analytical advantages.

Topics
  • nanocomposite
  • quantum dot
  • dendrimer
  • quenching