People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baker, Murray
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021Poly(2-hydroxyethyl methacrylate) hydrogels doped with copper nanoparticlescitations
- 2011Modifying the response of a polymer-based quartz crystal microbalance hydrocarbon sensor with functionalized carbon nanotubescitations
- 2008Polydivinylferrocene surface modified electrode for measuring state-of-charge of lead-acid batterycitations
- 2004Solvent roles in metal ion coordination: the NiCl2 O-solvates, NiCl2 · 4MeOH, NiCl2 · 2MeOH · 0.5dioxan and NiCl2 · 2H2O · 2dioxancitations
- 2004Synthesis and Electrochemical Characterization of New Thioether- and Ferrocene-Containing Copolymerscitations
- 2001Synthesis and Electrochemical Behaviour of Vinylferrocene-Propylene Sulfide-Graft Copolymerscitations
Places of action
Organizations | Location | People |
---|
article
Modifying the response of a polymer-based quartz crystal microbalance hydrocarbon sensor with functionalized carbon nanotubes
Abstract
This report compares the performance of polymer and carbon nanotube-polymer composite membranes on a quartz crystal microbalance (QCM) sensor for the detection of aromatic hydrocarbons (benzene, toluene, ethylbenzene, p-xylene and naphthalene) in aqueous solutions. Several different polymers (polystyrene, polystyrene-co-butadiene, polyisobutylene and polybutadiene) and types of functionalized carbon nanotubes (multi-walled and single-walled carbon nanotubes) were investigated at varying carbon nanotube (CNT) loading levels and film thicknesses. In a majority of instances, the difference in response between membranes comprising pure polymer and membranes containing 10% (w/w) carbon nanotubes were not statistically significant. However, a notable exception is the decreasing sensitivity towards p-xylene with increasing carbon nanotube content in a polybutadiene film. This variation in sensitivity can be attributed to a change in the sorption mechanism from absorption into the polymer phase to adsorption onto the carbon nanotube sidewalls. With much thicker coatings of 10% (w/w) carbon nanotube in polybutadiene, the sensitivity towards toluene was higher compared to the pure polymer. The increased toluene sensitivity may be partially attributed to an increase in the sorption capacity of a carbon nanotube polymer composite film relative to its corresponding pure polymer film. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) measurements were performed to understand the mechanism of sorption and these studies showed that the addition of functionalized CNT to the polymer increases the absorption of certain types of hydrocarbons. This study demonstrates that carbon nanotubes can be incorporated into a polymer-coated QCM sensor and that composite films may be used to modify the QCM response and selectivity during the analysis of complex hydrocarbon mixtures. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.