People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Esteves Da Silva, Jcge
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2020At-line monitoring of salification process of the antiretroviral lamivudine-saccharinate salt using FT-MIR spectroscopy with multivariate curve resolutioncitations
- 2019At-line green synthesis monitoring of new pharmaceutical co-crystals lamivudine:theophylline polymorph I and II, quantification of polymorph I among its APIs using FT-IR spectroscopy and MCR-ALScitations
- 2016Characterization of cellulose membranes modified with luminescent silicon quantum dots nanoparticlescitations
- 2014NO Fluorescence Quantification by Chitosan CdSe Quantum Dots Nanocompositescitations
- 2014Fingerprint detection and using intercalated CdSe nanoparticles on non-porous surfacescitations
- 2013Solid luminescent CdSe-thiolated porous phosphate heterostructures. Application in fingermark detection in different surfacescitations
- 2013Inclusion of thiol DAB dendrimer/CdSe quantum dots based in a membrane structure: Surface and bulk membrane modificationcitations
- 2013Coal Rank Increase and Aerial Oxidation by a Combination of Fourier Transform Infrared Spectroscopy with Multivariate Analysiscitations
- 2012Thiolated DAB dendrimer/ZnSe nanoparticles for C-reactive protein recognition in human serumcitations
- 2012Thiolated DAB dendrimers and CdSe quantum dots nanocomposites for Cd(II) or Pb(II) sensingcitations
- 2011CdS nanocomposites assembled in porous phosphate heterostructures for fingerprint detectioncitations
- 2011Chemometric Analysis of Excitation Emission Matrices of Fluorescent Nanocompositescitations
- 2011Analytical and bioanalytical applications of carbon dotscitations
- 2011Hybrid porous phosphate heterostructures as adsorbents of Hg(II) and Ni(II) from industrial sewagecitations
- 2011CdSe quantum dots capped PAMAM dendrimer nanocomposites for sensing nitroaromatic compoundscitations
- 2010Fluorescent Properties of a Hybrid Cadmium Sulfide-Dendrimer Nanocomposite and its Quenching with Nitromethanecitations
- 2010Porous phosphate heterostructures containing CdS quantum dots: assembly, characterization and photoluminescencecitations
- 2009Mercury(II) sensing based on the quenching of fluorescence of CdS-dendrimer nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
CdSe quantum dots capped PAMAM dendrimer nanocomposites for sensing nitroaromatic compounds
Abstract
The detection of nitroaromatic compounds, best known as raw materials in explosives preparations, is important in many fields including environmental science, public security and forensics. CdSe quantum dots capped with PAMAM-G(4) dendrimer were synthetized in water and used for the detection of trace amounts of three nitroaromatic compounds: 4-methoxy-2-nitrophenol (MNP), 2-amine-5chloro-1,3-dinitrobenzene (ACNB) and 3-methoxy-4-nitrobenzoic acid (MNB). To increase the apparent water solubility of these compounds alpha-cyclodextrin (alpha-CD) was used to promote the formation of inclusion complexes. The studied nitroaromatic compounds (plus alpha-CD) significantly quenched the fluorescence intensity of the nanocomposite with linear Stern-Volmer plots. The Stern-Volmer constants (standard deviation in parenthesis) were: MNB, K(SV) = 65(5) x 10(4) M(-1); ACNB, K(SV) = 19(2) x 10(4) M(-1); and, MNP, K(SV) =33(1) x 10(2) M(-1). These constants suggest the formation of a ground state complex between the nitroaromatric compounds and the sensor which confers a relatively high analytical sensitivity. The detection sensibilities are about 0.01 mg L(-1) for MNB and ACNB and about 0.1 mg L(-1) for MNP. No interferences or small interferences are observed for trinitrotoluene [K(SV) =10(2) x 10(2) x M(-1)], 2,4-dinitrotoluene [K(SV) = 20(3) x 10 M(-1)], 2,6-dinitrotoluene [K(SV) = 11(4) x 10 M(-1)] and nitrobenzene [K(SV) = 2(1) x 10(3) x M(-1)].