Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bhat, Shivaprasad Shridhara

  • Google
  • 1
  • 2
  • 3

University of Bristol

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Sizing limitations of ultrasonic array images for non-sharp defects and their impact on structural integrity assessments3citations

Places of action

Chart of shared publication
Larrosa, Nicolas O.
1 / 21 shared
Zhang, Jie
1 / 7 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Larrosa, Nicolas O.
  • Zhang, Jie
OrganizationsLocationPeople

article

Sizing limitations of ultrasonic array images for non-sharp defects and their impact on structural integrity assessments

  • Bhat, Shivaprasad Shridhara
  • Larrosa, Nicolas O.
  • Zhang, Jie
Abstract

Existing structural integrity assessment procedures typically assume flaws to be infinitely sharp when they cannot be considered as local thinned areas. This assumption is often over-conservative, resulting in a pessimistic assessment of structural components and a significant underestimation of their margins of safety against fracture. One of the main challenges while adopting non-destructive evaluation techniques is distinguishing between sharp cracks (e.g., fatigue) and non-sharp defects and identifying the more severe ones. Towards this broader challenge, the present work aims to examine the sizing limitation and accuracy of ultrasonic array image-based techniques for non-sharp defects (surface breaking u-notches) and investigate how these measurements would affect the structural integrity assessment of components. Parametric numerical simulations and experimental measurements are performed to generate full-matrix capture datasets, which are then processed using the total focusing method to form an image. The image-based sizing approach is shown to perform efficiently for notch depths higher than the inspection wavelength (λ L ), i.e. as small as 0.2 mm, and semi-notch widths as small as 0.1 mm. The influence of ultrasonic measurements on structural integrity assessments is highlighted using different case studies in the context of non-sharp defects of fatigue and fracture strength estimates. For the cases under analysis, resolving non-sharp defects led up to 5× and 3× values of effective fracture toughness and fatigue strength, respectively. We have also seen that a 30 % uncertainty in semi-notch width sizing would result in a 30 % and 20 % error in fatigue strength and fracture toughness estimations, respectively.

Topics
  • impedance spectroscopy
  • surface
  • simulation
  • crack
  • strength
  • fatigue
  • ultrasonic
  • fracture toughness