Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rettl, Matthias

  • Google
  • 2
  • 3
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Efficient prediction of crack initiation from arbitrary 2D notches5citations
  • 2021CrackDect: Detecting crack densities in images of fiber-reinforced polymers5citations

Places of action

Chart of shared publication
Pletz, Martin
2 / 12 shared
Schuecker, Clara
2 / 7 shared
Drvoderic, Matthias
1 / 3 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Pletz, Martin
  • Schuecker, Clara
  • Drvoderic, Matthias
OrganizationsLocationPeople

article

Efficient prediction of crack initiation from arbitrary 2D notches

  • Pletz, Martin
  • Rettl, Matthias
  • Schuecker, Clara
Abstract

<p>An efficient two-scale approach for predicting mode I crack initiation from 2D notches based on the Coupled Criterion is proposed. On the scale of the local model, a voxel model containing the notch simulates the displacement field. The crack model is introduced on the smaller scale and is defined in an image space. Based on the notch curvature, the precomputed crack model can be transformed to any position on the notch surface. The displacement field of the local model is fitted at the boundaries of the transformed crack model by predefined deformation modes and results can be obtained by a superposition of precomputed crack model results. By introducing the crack in the crack model, the stiffness of this model is reduced and thus, the incremental energy release rate can be inaccurate. Therefore, a boundary relaxation approach is used to obtain more accurate energy release rates. It is shown that the method is very efficient as it requires only 3:20 min to analyze 50 positions on a notch compared to 2:21 h of a conventional approach using full FEM simulations. Thereby, the method is reliable in identifying the critical position. The predicted failure index at this position deviates by at most 10.8%. Since the crack model limits the length of initiating cracks, Irwin's length K<sub>Ic</sub><sup>2</sup>/σ<sub>c</sub><sup>2</sup> of the material must lie below 2.53 times the radius of a circular hole under uniaxial tension. For a brittle material like Al<sub>2</sub>O<sub>3</sub>, notches with a curvature radius above 31μm can thus be analyzed.</p>

Topics
  • impedance spectroscopy
  • surface
  • simulation
  • crack
  • ion chromatography