People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Larrosa, Nicolas O.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Corrosion mechanisms of plasma welded Nickel aluminium bronze immersed in seawatercitations
- 2024Modelling the Effect of Residual Stresses on Damage Accumulation Using a Coupled Crystal Plasticity Phase Field Fracture Approach
- 2024Cohesive zone modelling of hydrogen environmentally assisted cracking for double cantilever beam samples of 7xxx aluminium alloys
- 2023The role of corrosion pit topography on stress concentration
- 2023Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack modelcitations
- 2023Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack modelcitations
- 2022Development of a microstructural cohesive zone model for intergranular hydrogen environmentally assisted crackingcitations
- 2022Development of a microstructural cohesive zone model for intergranular hydrogen environmentally assisted crackingcitations
- 2022Sizing limitations of ultrasonic array images for non-sharp defects and their impact on structural integrity assessmentscitations
- 2022The Role of Surface Roughness on Pitting Corrosion Initiation in Nickel Aluminium Bronzes in Aircitations
- 2020Pit to crack transition and corrosion fatigue lifetime reduction estimations by means of a short crack microstructural modelcitations
- 2020Pit to crack transition and corrosion fatigue lifetime reduction estimations by means of a short crack microstructural modelcitations
- 2020Hydrogen environmentally assisted cracking during static loading of AA7075 and AA7449citations
- 2020Hydrogen environmentally assisted cracking during static loading of AA7075 and AA7449citations
- 2018Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloycitations
- 2018Corrosion-fatiguecitations
- 2017A transferability approach for reducing excessive conservatism in fracture assessmentscitations
- 2016Ductile fracture modelling and J-Q fracture mechanicscitations
- 2016Blunt defect assessment in the framework of the failure assessment diagramcitations
- 2015Characterization of the effect of notch bluntness on hydrogen embrittlement and fracture behavior using fe analyses
- 2015Fatigue life estimation of pitted specimens by means of an integrated fracture mechanics approachcitations
Places of action
Organizations | Location | People |
---|
article
Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloy
Abstract
Here we analyse the relationship between the monotonic and cyclic behaviour of cylindrical AlSi10Mg (CL31 AL) samples fabricated by Selective Laser Melting (SLM) to the build direaction, the presence of manufacturing defects (pores, voids, oxides, etc.) and the beneficial effect of post-processing – T6 and hot isostatic pressing (HIP) – treatments. Correlative Computed Tomography (X-ray tomography, optical microscopy, electron backscatter diffraction, SEM and TEM) is used to characterise the microstructure and the three-dimensional (3D) structure of fatigue samples to shed light on the role of defects on the experimental fatigue behaviour. Pancake-shaped pores are observed in the plane of the deposited layers having a 130% higher volume fraction for the vertical layering deposition (VL) than for horizontal layered (HL) orientations, and being larger and flatter. Further, while T6 treatment had relatively little effect on reducing porosity, the HIPping reduced the pore fraction by 44% and 65% for VL and HL samples, respectively. T6 + Hipping decreased the yield stress and the ultimate tensile strength considerably while increasing elongation and reduction of area accordingly. Our results suggest that the fatigue life seems to be dominated by the presence of these crack-like (pancake-like) defects perpendicular to the loading direction such that it is better to build samples transverse to the highest fatigue loads. In this case, both T6 heat treatment and HIPping appear to reduce the fatigue strength of the material regardless of the AM deposition scheme as they tend to enlarge and collapse pores/voids to flat crack-like defects.