People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Castro, Pmst
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2015J resistance curve behaviour of S355NL structural steel using the unloading compliance techniquecitations
- 2014X-ray Diffraction Residual Stress Measurements for Assessment of Rolling Contact Fatigue Behaviour of Railway Steelscitations
- 2013A Contribution to the Mechanical Characterization of Cu ETP Used in the Electric Motors Industry
- 2013Fatigue Crack Propagation Behavior of The Welded Steel of a Railway Bridgecitations
- 2013Rolling contact fatigue tests on wheel and rail steels
- 2012FATIGUE CRACK GROWTH TESTS IN RAILWAY WHEEL AND RAIL STEELS
- 2012Fatigue Crack Propagation Behavior in Railway Steels
- 2012Fatigue assessment of a bowstring railway bridge
- 2012Fatigue and fracture behaviour of friction stir welded aluminium-lithium 2195citations
- 2012Fatigue crack growth in railway steelcitations
- 2010Fibre Bragg grating sensors for monitoring the metal inert gas and friction stir welding processescitations
- 2009FRICTION STIR WELDING OF T-JOINTS IN DISSIMILAR ALUMINIUM ALLOYScitations
- 2008Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: A comparisoncitations
- 2007Assessment of the fatigue behaviour of friction stir welded joints: Aluminium alloy 6082-T6
- 2007Fatigue behaviour of FSW and MIG weldments for two aluminium alloyscitations
- 2007Temperature field acquisition during gas metal arc welding using thermocouples, thermography and fibre Bragg grating sensorscitations
- 2006Fatigue behaviour of riveted steel lap jointscitations
- 2001Fracture analysis of forks of a heavy duty lift truckcitations
Places of action
Organizations | Location | People |
---|
article
Fatigue and fracture behaviour of friction stir welded aluminium-lithium 2195
Abstract
Aluminium-lithium (Al-Li) alloys offer attractive properties for lightweight aerospace structures, due to their low density, high strength and fatigue crack growth resistance. Although there are many advantages with Al-Li alloys. limitations remain while using conventional joining techniques. Friction stir welding is a well-established solid-state joining process that is expected to reduce many of the concerns about Al-Li welding. The work presented in this paper involves the characterisation of the fatigue performance of the AA2195-T8X at room temperature. SN and crack growth tests of base material and friction stir welded 5 mm thick specimens were performed. During crack growth tests, three different R ratios (minimum remote stress/maximum remote stress), 0.1, 0.5 and 0.8, were used per each three different material conditions: base material, heat affected zone (HAZ), and weldment. M(T) specimens containing notches at the centre of the weld, at the HAZ and at the base material, were tested. The fatigue crack growth specimens were left with an un-cracked ligament for final evaluation of fracture toughness. Novel results are presented for fatigue crack growth and toughness on T-L orientation. The results for SN fatigue behaviour, fatigue crack growth and toughness of the studied alloy and its friction stir weldments present high values when compared with data found in the literature.