People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ribeiro, As
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2017Strain-based approach for fatigue crack propagation simulation of the 6061-T651 aluminium alloycitations
- 2011Strain-life and crack propagation fatigue data from several Portuguese old metallic riveted bridgescitations
- 2008Analysis of Fatigue Damage under Block Loading in a Low Carbon Steelcitations
- 2008Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: A comparisoncitations
- 2007Assessment of the fatigue behaviour of friction stir welded joints: Aluminium alloy 6082-T6
- 2007Influence of the submerged arc welding in the mechanical behaviour of the P355NL1 steel - part II: analysis of the low/high cycle fatigue behaviourscitations
- 2006Low and high cycle fatigue and cyclic elasto-plastic behavior of the P355NL1 steelcitations
- 2006Fatigue behaviour of riveted steel lap jointscitations
- 2006A discussion on the performance of continuum plasticity models for fatigue lifetime assessment based on the local strain approach
- 2005Finite element modeling of fatigue damage using a continuum damage mechanics approachcitations
- 2004Finite element modelling of fatigue damage using a continuum damage mechanics approachcitations
Places of action
Organizations | Location | People |
---|
article
Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: A comparison
Abstract
Friction stir welding (FSW) is a solid-state joining process which emerged as an alternative technology to be used in high strength alloys that were difficult to join with conventional techniques. Notwithstanding the widespread interest in the possibilities offered by FSW, data concerning the fatigue behaviour of joints obtained using this process still is scarce. In this work, a comparative study between fatigue crack growth behaviour of friction stir welds of 6082-T6 and 6061-T6 aluminium alloys is carried out. Fatigue crack growth curves were determined for cracks growing in different locations of the weldments, including the base material, the heat affected zone and the welded material. Generally, friction stir material exhibited lower strength and ductility properties than the base material. However, an enhanced crack propagation resistance is observed in the welded material. The 6082-T6 and 6061-T6 base materials exhibit very similar crack propagation behaviours. On the other hand the friction stir 6061-T6 material shows lower crack propagation rates than corresponding 6082-T6 friction stir material. Particular features of the distinct microstructures of the welded and surrounding material are illustrated using scanning electron microscopy.