People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jensen, Lars Rosgaard
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (37/37 displayed)
- 2024Metal-Organic Framework Glass as a Functional Filler Enables Enhanced Performance of Solid-State Polymer Electrolytes for Lithium Metal Batteriescitations
- 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modelling
- 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modelling
- 2024Alcohols as modifiers in metal−bis(acetamide) hybrid coordination network glasses
- 2024Crystallinity dependence of thermal and mechanical properties of glass-ceramic foamscitations
- 2023Comparing the effects of Ga2O3 and Al2O3 on the structure and mechanical properties of sodium borate glassescitations
- 2023Comparing the effects of Ga2O3 and Al2O3 on the structure and mechanical properties of sodium borate glassescitations
- 2023Correlating structure with mechanical properties in lithium borophosphate glassescitations
- 2022Influence of phase separation microstructure on the mechanical properties of transparent modifier-free glassescitations
- 2022Fracture energy of high-Poisson’s ratio oxide glassescitations
- 2022Resolving the Conflict between Strength and Toughness in Bioactive Silica–Polymer Hybrid Materialscitations
- 2022Irradiation-induced toughening of calcium aluminoborosilicate glassescitations
- 2021Mechanical properties of hydrated cesium-lithium aluminoborate glassescitations
- 2020Heat conduction in oxide glasses: Balancing diffusons and propagons by network rigiditycitations
- 2020Heat conduction in oxide glasses: Balancing diffusons and propagons by network rigiditycitations
- 2020Achieving ultrahigh crack resistance in glass through humid agingcitations
- 2020Competitive effects of free volume, rigidity, and self-adaptivity on indentation response of silicoaluminoborate glassescitations
- 2020Fracture toughness of a metal–organic framework glasscitations
- 2019Breaking the Limit of Micro-Ductility in Oxide Glassescitations
- 2019Mechanical property optimization of a zinc borate glass by lanthanum dopingcitations
- 2019Electrospinning of nonwoven aerogel-polyethene terephthalate composite fiber mats by pneumatic transportcitations
- 2019Electrospinning of nonwoven aerogel-polyethene terephthalate composite fiber mats by pneumatic transportcitations
- 2018Deformation and cracking behavior of La2O3-doped oxide glasses with high Poisson's ratiocitations
- 2018Structural Impact of Nitrogen Incorporation on Properties of Alkali Germanophosphate Glassescitations
- 2018Nano-phase separation and structural ordering in silica-rich mixed network former glassescitations
- 2018Structural stability of NaPON glass upon heating in air and nitrogencitations
- 2017Mutual-stabilization in chemically bonded graphene oxide–TiO2 heterostructures synthesized by a sol–gel approachcitations
- 2017Dispersion and functionalization of single-walled carbon nanotubes (SWCNTS) for nanocomposite applicationscitations
- 2017Monitoring self-sensing damage of multiple carbon fiber composites using piezoresistivitycitations
- 2016Structure and mechanical properties of compressed sodium aluminosilicate glassescitations
- 2016A molecular dynamics study on the interaction between epoxy and functionalized graphene sheetscitations
- 2016Strain sensing in single carbon fiber epoxy composites by simultaneous in-situ Raman and piezoresistance measurementscitations
- 2013Processing and characterization of polyurethane nanocomposite foam reinforced with montmorillonite-carbon nanotube hybridscitations
- 2013Evaluation of the anisotropic mechanical properties of reinforced polyurethane foamscitations
- 2012Synthesis of clay-carbon nanotube hybridscitations
- 2012Synthesis of clay-carbon nanotube hybrids:Growth of carbon nanotubes in different types of iron modified montmorillonitecitations
- 2005Microscopic Mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite
Places of action
Organizations | Location | People |
---|
article
Monitoring self-sensing damage of multiple carbon fiber composites using piezoresistivity
Abstract
The change of electrical resistance in small bundles of multiple carbon fibers and multiple unidirectional carbon fiber/epoxy composites with applied tensile strain has been investigated. The electrical resistance of bundles initially increases relatively slowly in a stepwise manner with increasing strain due to fracture of peripheral fibers. This regime corresponds to the linearly increasing part of the load-strain curve. At higher strain, a progressive fracture of inner fibers in the bundle associated with flat region of load-strain curve leads to concomitant sudden rise of resistance. When the whole sample undergoes major failure, the slope of the load-strain curve becomes negative while the relative resistance increases abruptly to infinity. In strands of carbon fibers slightly impregnated with epoxy the change of resistance is affected by the thickness of epoxy layer surrounding the fibers. We demonstrate that volume fraction of fibers as well as initial number of fibers in the epoxy determines the piezoresistance properties of the specimen. Broken fibers can come into electrical contact with unbroken fibers and thus participate to the overall resistance of the specimen. As a result the dependency of relative resistance versus increasing applied strain presents stepwise behaviour also in the high strain region that is attributed to fiber fracture. In contrast to the bundles of bare carbon fibers, the stress-strain curves of the composites demonstrate monotonous linear increase in both low and high strain regions. The relative resistance goes to infinity when all remaining unbroken fibers undergo fracture.