People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Larsen, Niels Bent
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducerscitations
- 2022High Resolution Dual Material Stereolithography for Monolithic Microdevicescitations
- 2022Immobilization of Active Antibodies at Polymer Melt Surfaces during Injection Molding
- 20213D printed calibration micro-phantoms for super-resolution ultrasound imaging validationcitations
- 20193D Printed Calibration Micro-phantoms for Validation of Super-Resolution Ultrasound Imagingcitations
- 2015Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection moldingcitations
- 2013Injection molding of high aspect ratio sub-100 nm nanostructurescitations
- 2013Designing CAF-adjuvanted dry powder vaccinescitations
- 2012A Platform for Functional Conductive Polymers
- 2012Micropatterning of Functional Conductive Polymers with Multiple Surface Chemistries in Registercitations
- 2011Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer filmcitations
- 2011Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experimentscitations
- 2011Microwave assisted click chemistry on a conductive polymer filmcitations
- 2011Selective gas sensing for photonic crystal lasers
- 2010Fast prototyping of injection molded polymer microfluidic chipscitations
- 2010Nanostructures for all-polymer microfluidic systemscitations
- 2010“Electro-Click” on Conducting Polymer Films
- 2008Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate
- 2008Conductive Polymer Functionalization by Click Chemistrycitations
- 2007Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stampingcitations
- 2006On the Injection Molding of Nanostructured Polymer Surfacescitations
- 2001Surface morphology of PS-PDMS diblock copolymer filmscitations
Places of action
Organizations | Location | People |
---|
article
Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stamping
Abstract
A highly conducting stretchable polymer material has been patterned using additive inkjet printing and by subtractive agarose stamping of a deactivation agent (hypochlorite). The material consisted of elastomeric polyurethane combined in an interpenetrating network with a conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT). The agarose stamping produced 50 μm wide conducting lines with high spatial fidelity. The deactivation agent was found to cause some degradation of the remaining conducting lines, as revealed by a stronger increase in resistance upon straining compared to the pristine polymer material. Inkjet printing of the material was only possible if a short-chain polyurethane was used as elastomer to overcome strain hardening at the neck of the droplets produced for printing. Reproducible line widths down to 200 μm could be achieved by inkjet printing. Both methods were used to fabricate test patterns that allowed the electrical resistance parallel and perpendicular to the elongation direction to be measured. Electrical resistance increased both parallel and perpendicular to the direction of strain, with a faster increase observed parallel to the straining.