Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Meins, Jean-Marc Le

  • Google
  • 1
  • 3
  • 67

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Impact of biomass inorganic impurities on hard carbon properties and performance in Na-ion batteries67citations

Places of action

Chart of shared publication
Ghimbeu, Camelia Matei
1 / 3 shared
Simon, Patrice
1 / 48 shared
Beda, Adrian
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Ghimbeu, Camelia Matei
  • Simon, Patrice
  • Beda, Adrian
OrganizationsLocationPeople

article

Impact of biomass inorganic impurities on hard carbon properties and performance in Na-ion batteries

  • Ghimbeu, Camelia Matei
  • Simon, Patrice
  • Meins, Jean-Marc Le
  • Beda, Adrian
Abstract

Biomass waste recently emerged as efficient precursors for hard carbon anode preparation for Na-ion batteries. Despite their very complex microstructure (organic/inorganic) there is a lack of knowledge about their impact on carbon formation. In this paper, the influence of inorganic impurities of three raw local biomass wastes (asparagus, grape and potato) on the hard carbon properties and on their electrochemical performance is investigated, by performing a washing step either before or after the thermal treatment (TT) at 1300°C. When washing was done after the TT (with HCl), most of crystalline inorganic impurities (K, Ca, Si, Mg-based compounds) could be significantly removed. This triggered the increase of ultramicroporosity along with mesoporosity formation and graphite interlayer space (d 002) contraction. Such observations are less pronounced on grape derived carbon due to the inorganic's catalytic induced local graphitization during pyrolysis. The oxygen content in the pristine carbons was high, owing to the presence of inorganic metal oxides and carbonates, and could be diminished after washing along with the amount of defects. Thus, the carbon content and the electronic conductivity of the materials were enhanced. The electrochemical performance improvement after washing was limited since the positive effect brought by impurities removal was negatively compensated by the changes occurring in the materials, particularly the increase in the specific surface area. Diffrently, the washing done before the TT (with water) induced only fewer changes on the materials porosity and structure and slightly improved capacity (from 215 to 230 mAh g −1). Furthermore, higher pyrolysis temperature (1400°C) on washed HCs afforded a better reversible capacity up to 280 mAh g −1. This comprehensive study opens the door for green and mild synthesis approach to be further explored for sustainable fabrication of hard carbon for Na-ion batteries.

Topics
  • pyrolysis
  • impedance spectroscopy
  • surface
  • compound
  • Carbon
  • Oxygen
  • laser emission spectroscopy
  • defect
  • porosity
  • oxygen content
  • washing
  • carbon content