Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ladstätter, Werner

  • Google
  • 2
  • 10
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Influence of morphology and chemical surface composition on electrical conductivity of SiC microspheres1citations
  • 2016Flexible epoxy based composites with enhanced delamination resistancecitations

Places of action

Chart of shared publication
Ramsauer, Franz
2 / 2 shared
Bergmann, Irmgard
1 / 1 shared
Schlögl, Sandra
2 / 33 shared
Kern, Wolfgang
2 / 14 shared
Radl, Simone
1 / 1 shared
Pleșa, Ilona
1 / 1 shared
Schichler, Uwe
1 / 1 shared
Lemesch, Gerhard
1 / 1 shared
Bichler, Sabine
1 / 1 shared
Lenko, Dietmar
1 / 1 shared
Chart of publication period
2022
2016

Co-Authors (by relevance)

  • Ramsauer, Franz
  • Bergmann, Irmgard
  • Schlögl, Sandra
  • Kern, Wolfgang
  • Radl, Simone
  • Pleșa, Ilona
  • Schichler, Uwe
  • Lemesch, Gerhard
  • Bichler, Sabine
  • Lenko, Dietmar
OrganizationsLocationPeople

article

Influence of morphology and chemical surface composition on electrical conductivity of SiC microspheres

  • Ramsauer, Franz
  • Bergmann, Irmgard
  • Schlögl, Sandra
  • Kern, Wolfgang
  • Radl, Simone
  • Pleșa, Ilona
  • Ladstätter, Werner
  • Schichler, Uwe
Abstract

<p>The present work provides a comparative study on the electrical properties (i.e. current-voltage characteristics) of spherically shaped SiC micro-sized particles that have been prepared by a thermal sintering process. As a typical field grading material, SiC exhibits a non-linear current-voltage behavior, which is exploited to reduce electrical stresses within composite materials. This is of particular interest in high-voltage applications to avoid material breakdown and to enhance the electrical components’ lifetime. As the current-voltage characteristics are affected by transport mechanisms at the grain contact, the electrical performance can be controlled by changing the chemical surface composition and morphology of the SiC particles. Advancing from irregular SiC flakes, the current work focuses on the electrical properties of SiC microspheres that have been tailored by applying selected thermal annealing steps and by chemical surface functionalization with organosilanes. The chemical surface composition of the microspheres prior to and after the modification step was studied by XPS and EDX, whilst SEM was employed to visualize the morphology of the particles’ surface and cross-section. In addition, the current-voltage characteristics were determined as a function of the particles’ morphology and chemical surface composition. The results clearly show that sintering aids, annealing temperature, morphology of particles and surface modification strongly govern the non-linear current-voltage behavior of SiC microspheres.</p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • grain
  • scanning electron microscopy
  • x-ray photoelectron spectroscopy
  • composite
  • annealing
  • Energy-dispersive X-ray spectroscopy
  • functionalization
  • electrical conductivity
  • sintering