People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Islam, Mazharul M.
Cardiff University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2018The structure of reconstructed chalcopyrite surfacescitations
- 2014Theoretical study of Li migration in lithium-graphite intercalation compounds with dispersion-corrected DFT methodscitations
- 2013Energy ordering of grain boundaries in Cr2O3citations
- 2012The ionic conductivity in lithium-boron oxide materials and its relation to structural, electronic and defect propertiescitations
- 2011Reconstruction of TiAl Intermetallic Surfaces: A Combined STM and DFT Studycitations
- 2011Electronic and optical properties of BAs under pressurecitations
- 2009Atomistic modeling of voiding mechanisms at oxide/alloy interfacescitations
- 2007Enhanced conductivity at the interface of Li2O:B2O3 nanocompositescitations
- 2007Enhanced conductivity at the interface of Li2O:B2O3 nanocomposites: Atomistic models
Places of action
Organizations | Location | People |
---|
article
The structure of reconstructed chalcopyrite surfaces
Abstract
<p>Chalcopyrite (CuFeS<sub>2</sub>) surfaces are of major interest for copper exploitation in aqueous solution, called leaching. Since leaching is a surface process knowledge of the surface structure, bonding pattern and oxidation states is important for improving the efficiency. At present such information is not available from experimental studies. Therefore a detailed computational study of chalcopyrite surfaces is performed. The structures of low-index stoichiometric chalcopyrite surfaces {hkl} h, k, l ∈ {0, 1, 2} have been studied with density functional theory (DFT) and global optimization strategies. We have applied ab initio molecular dynamics (MD) in combination with simulated annealing (SA) in order to explore possible reconstructions via a minima hopping (MH) algorithm. In almost all cases reconstruction involving substantial rearrangement has occurred accompanied by reduction of the surface energy. The analysis of the change in the coordination sphere and migration during reconstruction reveals that S-S dimers are formed on the surface. Further it was observed that metal atoms near the surface move toward the bulk forming metal alloys passivated by sulfur. The obtained surface energies of reconstructed surfaces are in the range of 0.53–0.95 J/m<sup>2</sup>.</p>