Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Momeni, Anouchah

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Grazing incidence fast atom diffraction in high-pressure conditionscitations

Places of action

Chart of shared publication
Khemliche, H.
1 / 1 shared
Minea, T.
1 / 8 shared
Allouche, A. R.
1 / 2 shared
Mukherjee, A.
1 / 10 shared
Casagrande, E. M. Staicu
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Khemliche, H.
  • Minea, T.
  • Allouche, A. R.
  • Mukherjee, A.
  • Casagrande, E. M. Staicu
OrganizationsLocationPeople

article

Grazing incidence fast atom diffraction in high-pressure conditions

  • Momeni, Anouchah
  • Khemliche, H.
  • Minea, T.
  • Allouche, A. R.
  • Mukherjee, A.
  • Casagrande, E. M. Staicu
Abstract

International audience ; Grazing Incidence Fast Atom Diffraction (GIFAD) is a recent technique for characterizing surface structures and real-time monitoring of thin film growth. Up to now, GIFAD has only been used in Ultra-High-Vacuum conditions, typically in the range of 10-10 to 10-8 mbar, and has therefore only been considered for high vacuum deposition methods like Molecular Beam Epitaxy or very lowpressure Chemical Vapor Deposition (CVD). At pressures exceeding 10-6 mbar, gas phase collisions along the atom beam trajectory not only reduce the mean free path but also degrade the beam coherence length and thus potentially suppress the diffraction signal. In addition, pressures lower than 10-5 mbar are required to maintain a low noise level on the scattered particle detector. In a new configuration, we demonstrate that GIFAD can operate at pressure as high as 10-2 mbar of argon with well-contrasted diffraction patterns. This opens wide avenues for the study of surface reactivity, thin film growth in Magnetron Sputtering Deposition, where electron diffraction is inevitably perturbed by the electromagnetic fields. This High-Pressure version of GIFAD could also be extended to Reactive Pulsed Laser Deposition and many CVD variants.

Topics
  • impedance spectroscopy
  • surface
  • thin film
  • electron diffraction
  • reactive
  • mass spectrometry
  • gas phase
  • pulsed laser deposition
  • chemical vapor deposition