People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Birkett, Martin
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Precision depth-controlled isolated silver nanoparticle-doped diamond-like carbon coatings with enhanced ion release, biocompatibility, and mechanical performancecitations
- 2023Soft diamond-like carbon coatings with superior biocompatibility for medical applicationscitations
- 2023Biocompatible Ti3Au–Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionalitycitations
- 2023Biocompatible Ti3Au–Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionalitycitations
- 2022Enhanced mechanical and biocompatibility performance of Ti(1- x )Ag(x) coatings through intermetallic phase modificationcitations
- 2022Thermal activation of Ti(1-x)Au(x) thin films with enhanced hardness and biocompatibility citations
- 2022Tribological Behavior of Microalloyed Cu50Zr50 Alloy
- 2022Tribological Behavior of Microalloyed Cu50Zr50 Alloy
- 2022Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistancecitations
- 2022Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistancecitations
- 2022Investigating the Thermal and Mechanical Properties of Polyurethane Urea Nanocomposites for Subsea Applications
- 2022Thermal activation of Ti(1-x)Au(x) thin films with enhanced hardness and biocompatibilitycitations
- 2021Mechanical performance of biocompatible Ti-Au thin films grown on glass and Ti6Al4V substrates
- 2021Effect of noble metal (M=Ag, Au) doping concentration on mechanical and biomedical properties of Ti-M matrix thin films co-deposited by magnetron sputtering
- 2019A Numerical and Experimental Study of Adhesively-Bonded Polyethylene Pipelinescitations
- 2018Tuning the antimicrobial behaviour of Cu85Zr15 thin films in “wet” and “dry” conditions through structural modificationscitations
- 2016Mechanical behaviour of adhesively bonded polyethylene tapping teescitations
- 2016Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputteringcitations
- 2016Resistor trimming geometry; past, present and futurecitations
- 2015Investigation into the Development of an Additive Manufacturing Technique for the Production of Fibre Composite Productscitations
- 2012Optimization of the deposition and annealing of CuAIMo thin film resistors
- 2008Discrete resistor technologies and potential future advancements
- 2006Effects of annealing on the electrical properties of NiCr vs AlCu thin film resistors prepared by DC magnetron sputtering
Places of action
Organizations | Location | People |
---|
article
Precision depth-controlled isolated silver nanoparticle-doped diamond-like carbon coatings with enhanced ion release, biocompatibility, and mechanical performance
Abstract
Silver doped diamond-like carbon (Ag/DLC) coatings are in high demand for biomedical applications such as artificial implants, surgical instruments, and medical devices. However, recent reports indicate that the excess Ag concentration required in typically made Ag/DLC coatings significantly reduces their mechanical performance and biocompatibility. Here, we propose a novel single-step approach to precisely dope small quantities of Ag in the form of isolated nanoparticles embedded at defined depths in a DLC matrix. This new Ag/DLC coating architecture is designed to release controlled Ag ion levels to fight infection in the early post-surgery stages, while a confined Ag amount maintains the excellent mechanical and biocompatibility performance of the underlying DLC coating when compared to typically made Ag/DLC coating designs. Coatings of pure DLC, typically made Ag/DLC with Ag doped throughout the carbon matrix and the new Ag/DLC design with precise Ag doping, are made using a modified magnetron sputtering system. The coatings are characterised for structural, mechanical, ion leaching, and biocompatibility profiles against L929 fibroblast cells. Results indicate that the new Ag/DLC coating requires only 2 at.% Ag to release a similar level of Ag ions (~0.6 ppm) to a typical Ag/DLC coating with a much higher Ag content of 17 at.%. The new Ag/DLC coating design also outperforms the typical design with a 63 % increase in hardness, 100 % higher Young's modulus, and 21 % higher biocompatibility. The enhanced biomechanical performance of the proposed new Ag/DLC architecture could have significant potential for coating of future medical devices.