Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Li, Ziyu

  • Google
  • 4
  • 6
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Review of the state of art of Li-based inhibitors and coating technology for the corrosion protection of aluminium alloys13citations
  • 2024Spatiotemporally resolved corrosion protection of AA2024-T3 by a lithium-based conversion layer3citations
  • 2023Local scanning electrochemical microscopy analysis of a lithium-based conversion layer on AA2024-T3 at progressive stages of formation4citations
  • 2022Evaluation of the formation and protectiveness of a lithium-based conversion layer using electrochemical noise18citations

Places of action

Chart of shared publication
Mol, Arjan
4 / 64 shared
Gonzalez-Garcia, Yaiza
4 / 27 shared
Hughes, Anthony E.
1 / 10 shared
Visser, Peter
4 / 23 shared
Li, Gaojie
1 / 1 shared
Kosari, Ali
1 / 14 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Mol, Arjan
  • Gonzalez-Garcia, Yaiza
  • Hughes, Anthony E.
  • Visser, Peter
  • Li, Gaojie
  • Kosari, Ali
OrganizationsLocationPeople

article

Review of the state of art of Li-based inhibitors and coating technology for the corrosion protection of aluminium alloys

  • Mol, Arjan
  • Gonzalez-Garcia, Yaiza
  • Hughes, Anthony E.
  • Li, Ziyu
  • Visser, Peter
Abstract

<p>The quest for novel alternatives to hexavalent-chromium-based corrosion inhibitors is of utmost significance and urgency. Strict international health and safety regulations, due to growing concerns regarding the impact of hexavalent chromium on human health and the environment, have pushed the commercial introduction of many alternative inhibitor types, but the implementation of alternative active protective primers for structural parts in the aerospace industry is still pending. This endeavour has proven to be remarkably challenging, as the potential replacement coating types must meet numerous functional requirements encompassing cost-effectiveness and exceptional corrosion protection for intrinsically corrosion susceptible aerospace aluminium alloys. In recent years, considerable attention has been drawn to lithium salts as environmentally friendly corrosion inhibitors forming the basis for a novel active protective coating technology. The involvement of lithium ions has been shown to play a pivotal role in the conversion process of aluminium alloy surfaces by stabilizing the reaction products, thereby facilitating the gradual development of a protective layer with a multi-layered configuration, which exhibits considerable variability in morphology, depending on local chemical and electrochemical conditions. The versatility of the lithium-based corrosion protection extends to their application as corrosion inhibiting pigments in organic coatings or as a pre-treatment, directly forming conversion layers, thereby enhancing their practical implementation. However, previous chromate replacement reviews only introduced the promising outcomes provided by the lithium technology, omitting key details of its development and formation mechanism. This paper critically reviews and summarizes the studies conducted to date on lithium-based inhibitor technologies for the corrosion protection of aluminium alloys as well as topics to be investigated in the future.</p>

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • chromium
  • aluminium
  • layered
  • aluminium alloy
  • forming
  • Lithium