People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gonzalez-Garcia, Yaiza
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Review of the state of art of Li-based inhibitors and coating technology for the corrosion protection of aluminium alloyscitations
- 2024Albumin Protein Impact on Early-Stage In Vitro Biodegradation of Magnesium Alloy (WE43)citations
- 2024Spatiotemporally resolved corrosion protection of AA2024-T3 by a lithium-based conversion layercitations
- 2024Effects of grain boundary chemistry and precipitate structure on intergranular corrosion in Al-Mg-Si alloys doped with Cu and Zncitations
- 2023Corrosion and passive film characteristics of 3D-printed NiTi shape memory alloys in artificial salivacitations
- 2023Local scanning electrochemical microscopy analysis of a lithium-based conversion layer on AA2024-T3 at progressive stages of formationcitations
- 2023Passive film formation and corrosion resistance of laser-powder bed fusion fabricated NiTi shape memory alloyscitations
- 2023Challenges and Strategies for Optimizing Corrosion and Biodegradation Stability of Biomedical Micro‐ and Nanoswimmers: A Reviewcitations
- 2022Evaluation of the formation and protectiveness of a lithium-based conversion layer using electrochemical noisecitations
- 2022Localised aqueous corrosion of electroless nickel immersion gold-coated coppercitations
- 2022Passive Film Properties of Martensitic Steels in Alkaline Environment: Influence of the Prior Austenite Grain Sizecitations
- 2022Corrosion and Microstructural Investigation on Additively Manufactured 316L Stainless Steel: Experimental and Statistical Approachcitations
- 2021Editors' Choice - Dealloying-Driven Cerium Precipitation on Intermetallic Particles in Aerospace Aluminium Alloyscitations
- 2020Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interfacecitations
- 2019Self-healing epoxy nanocomposite coatings based on dual-encapsulation of nano-carbon hollow spheres with film-forming resin and curing agentcitations
- 2018Properties and performance of spin-on-glass coatings for the corrosion protection of stainless steels in chloride media
- 2018Additively manufactured biodegradable porous ironcitations
- 2017Use of local electrochemical methods (SECM, EC-STM) and AFM to differentiate microstructural effects (EBSD) on very pure coppercitations
- 2017Electrochemical evaluation of corrosion inhibiting layers formed in a defect from lithium-leaching organic coatingscitations
- 2017Corrosion Resistance of AISI 316L Coated with an Air-Cured Hydrogen Silsesquioxane Based Spin-On-Glass Enamel in Chloride Environmentcitations
- 2016Micro-biologically induced steel corrosion and corrosion control in simulated marine environment
- 2016Active and passive protection of AA2024-T3 by a hybrid inhibitor doped mesoporous sol-gel and top coating systemcitations
- 2015Active and passive corrosion protection of AA2024-T3 by an hybrid inhibitor doped mesoporous sol-gel and top coating system
- 2015Active and passive corrosion protection of AA2024-T3 by an hybrid inhibitor doped mesoporous sol-gel and top coating system
- 2015On the application of scanning microelectrochemical techniques to study the active protection offered by inhibitor loaded mesoporous sol-gel films
- 2015Active corrosion protection of AA2024-T3 by an hybrid inhibitor doped mesoporous sol-gel and top coating system
- 2011A combined mechanical, microscopic and local electrochemical evaluation of self-healing properties of shape-memory polyurethane coatings (available online)
Places of action
Organizations | Location | People |
---|
article
Review of the state of art of Li-based inhibitors and coating technology for the corrosion protection of aluminium alloys
Abstract
<p>The quest for novel alternatives to hexavalent-chromium-based corrosion inhibitors is of utmost significance and urgency. Strict international health and safety regulations, due to growing concerns regarding the impact of hexavalent chromium on human health and the environment, have pushed the commercial introduction of many alternative inhibitor types, but the implementation of alternative active protective primers for structural parts in the aerospace industry is still pending. This endeavour has proven to be remarkably challenging, as the potential replacement coating types must meet numerous functional requirements encompassing cost-effectiveness and exceptional corrosion protection for intrinsically corrosion susceptible aerospace aluminium alloys. In recent years, considerable attention has been drawn to lithium salts as environmentally friendly corrosion inhibitors forming the basis for a novel active protective coating technology. The involvement of lithium ions has been shown to play a pivotal role in the conversion process of aluminium alloy surfaces by stabilizing the reaction products, thereby facilitating the gradual development of a protective layer with a multi-layered configuration, which exhibits considerable variability in morphology, depending on local chemical and electrochemical conditions. The versatility of the lithium-based corrosion protection extends to their application as corrosion inhibiting pigments in organic coatings or as a pre-treatment, directly forming conversion layers, thereby enhancing their practical implementation. However, previous chromate replacement reviews only introduced the promising outcomes provided by the lithium technology, omitting key details of its development and formation mechanism. This paper critically reviews and summarizes the studies conducted to date on lithium-based inhibitor technologies for the corrosion protection of aluminium alloys as well as topics to be investigated in the future.</p>