People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Visser, Peter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Review of the state of art of Li-based inhibitors and coating technology for the corrosion protection of aluminium alloyscitations
- 2024Review of the state of art of Li-based inhibitors and coating technology for the corrosion protection of aluminium alloyscitations
- 2024Design, Manufacturing, and Testing of a Metallic Fuselage Panel Incorporating New Alloys and Environmentally Friendly Technologies
- 2024Spatiotemporally resolved corrosion protection of AA2024-T3 by a lithium-based conversion layercitations
- 2024Spatiotemporally resolved corrosion protection of AA2024-T3 by a lithium-based conversion layercitations
- 2023Local scanning electrochemical microscopy analysis of a lithium-based conversion layer on AA2024-T3 at progressive stages of formationcitations
- 2023Local scanning electrochemical microscopy analysis of a lithium-based conversion layer on AA2024-T3 at progressive stages of formationcitations
- 2022Chromate-Free Corrosion Protection Strategies for Magnesium Alloys—A Review: Part II—PEO and Anodizingcitations
- 2022Evaluation of the formation and protectiveness of a lithium-based conversion layer using electrochemical noisecitations
- 2022Evaluation of the formation and protectiveness of a lithium-based conversion layer using electrochemical noisecitations
- 2021Laterally-resolved formation mechanism of a lithium-based conversion layer at the matrix and intermetallic particles in aerospace aluminium alloyscitations
- 2020Chromate ion transport in epoxy films: Influence of BaSO4 particlescitations
- 2020Chromate ion transport in epoxy films: Influence of BaSO4 particlescitations
- 2019Active corrosion protection of various aluminium alloys by lithium-leaching coatingscitations
- 2018On the importance of irreversibility of corrosion inhibitors for active coating protection of AA2024-T3citations
- 2018Compositional study of a corrosion protective layer formed by leachable lithium salts in a coating defect on AA2024-T3 aluminium alloyscitations
- 2017Electrochemical evaluation of corrosion inhibiting layers formed in a defect from lithium-leaching organic coatingscitations
- 2016Lithium salts as leachable corrosion inhibitors and potential replacement for hexavalent chromium in organic coatings for the protection of aluminum alloyscitations
- 2016Study of the formation of a protective layer in a defect from lithium-leaching organic coatingscitations
- 2016An investigation of the corrosion inhibitive layers generated from lithium oxalatecontaining organic coating on AA2024-T3 aluminium alloycitations
- 2015The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatingscitations
- 2015The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatingscitations
- 2015Protective Film Formation on AA2024-T3 Aluminum Alloy by Leaching of Lithium Carbonate from an Organic Coating
Places of action
Organizations | Location | People |
---|
article
Review of the state of art of Li-based inhibitors and coating technology for the corrosion protection of aluminium alloys
Abstract
<p>The quest for novel alternatives to hexavalent-chromium-based corrosion inhibitors is of utmost significance and urgency. Strict international health and safety regulations, due to growing concerns regarding the impact of hexavalent chromium on human health and the environment, have pushed the commercial introduction of many alternative inhibitor types, but the implementation of alternative active protective primers for structural parts in the aerospace industry is still pending. This endeavour has proven to be remarkably challenging, as the potential replacement coating types must meet numerous functional requirements encompassing cost-effectiveness and exceptional corrosion protection for intrinsically corrosion susceptible aerospace aluminium alloys. In recent years, considerable attention has been drawn to lithium salts as environmentally friendly corrosion inhibitors forming the basis for a novel active protective coating technology. The involvement of lithium ions has been shown to play a pivotal role in the conversion process of aluminium alloy surfaces by stabilizing the reaction products, thereby facilitating the gradual development of a protective layer with a multi-layered configuration, which exhibits considerable variability in morphology, depending on local chemical and electrochemical conditions. The versatility of the lithium-based corrosion protection extends to their application as corrosion inhibiting pigments in organic coatings or as a pre-treatment, directly forming conversion layers, thereby enhancing their practical implementation. However, previous chromate replacement reviews only introduced the promising outcomes provided by the lithium technology, omitting key details of its development and formation mechanism. This paper critically reviews and summarizes the studies conducted to date on lithium-based inhibitor technologies for the corrosion protection of aluminium alloys as well as topics to be investigated in the future.</p>