People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Foss, Morten
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Comment on “Which fraction of stone wool fibre surface remains uncoated by binder? A detailed analysis by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy” by Hirth et al., 2021, RSC Adv., 11, 39545, DOI: 10.1039/d1ra06251dcitations
- 2023Thermochemical oxidation of commercially pure titanium; controlled formation of robust white titanium oxide layers for biomedical applicationscitations
- 2023Thermochemical oxidation of commercially pure titanium; controlled formation of robust white titanium oxide layers for biomedical applications.citations
- 2022Local Release of Strontium from Sputter-Deposited Coatings at Implants Increases the Strontium-to-Calcium Ratio in Peri-implant Bonecitations
- 2022Local Release of Strontium from Sputter-Deposited Coatings at Implants Increases the Strontium-to-Calcium Ratio in Peri-implant Bonecitations
- 2022The dissolution of stone wool fibers with sugar-based binder and oil in different synthetic lung fluidscitations
- 2021Post-treatments of polydopamine coatings influence cellular responsecitations
- 2018A comparative in vivo study of strontium-functionalized and SLActive (TM) implant surfaces in early bone healingcitations
- 2017Early stage dissolution characteristics of aluminosilicate glasses with blast furnace slag- and fly-ash-like compositionscitations
- 2015Response of MG63 osteoblast-like cells to ordered nanotopographies fabricated using colloidal self-assembly and glancing angle depositioncitations
- 2015Modulation of Human Mesenchymal Stem Cell Behavior on Ordered Tantalum Nanotopographies Fabricated Using Colloidal Lithography and Glancing Angle Depositioncitations
- 2015Low-aspect ratio nanopatterns on bioinert alumina influence the response and morphology of osteoblast-like cellscitations
- 2012Temperature-induced ultradense PEG polyelectrolyte surface grafting provides effective long-term bioresistance against mammalian cells, serum, and whole bloodcitations
- 2011Growth characteristics of inclined columns produced by Glancing Angle Deposition (GLAD) and colloidal lithographycitations
- 2010Synthesis of functional nanomaterials via colloidal mask templating and glancing angle deposition (GLAD)”
- 2009Polycaprolactone nanomesh cultured with hMSC evaluated by synchrotron tomography
- 2009The use of combinatorial topographical libraries for the screening of enhanced osteogenic expression and mineralizationcitations
Places of action
Organizations | Location | People |
---|
article
Thermochemical oxidation of commercially pure titanium; controlled formation of robust white titanium oxide layers for biomedical applications.
Abstract
This study addresses controlled formation of white rutile surface layers on commercially pure (CP) titanium by gaseous thermochemical oxidation. The formed oxide layers were investigated with light optical microscopy (LOM), scanning electron microscopy (SEM), X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), transmission electron microscopy - energy-dispersive X-ray spectroscopy (TEM-EDXs), spectrophotometry, thermogravimetric analysis (TGA), and Vickers micro-indentation. The oxidation response of CP titanium in different single gas systems, O 2 , N 2 O, or CO 2, at temperatures ranging from 750 °C to 1000 °C, showed that the formed oxide scales exhibit oxide stratification, irrespective of the applied gas. Additionally, a two-step oxidation process was found to result in controlled growth of robust, dense, adherent white titanium oxide layers. The two-step process entails a first oxidation step in an atmosphere of CO/CO 2 at 750 °C; a second oxidation step is performed in N 2 /N 2 O at 650 °C. The oxidation in a CO/CO 2 atmosphere results in the incorporation of carbon in the forming oxide layer. TEM-EDXs analysis after oxidation in CO/CO 2 revealed that carbon resides in thin interlayers between slightly stratified 200-300 nm layers of rutile. This unique “composite” oxide layer containing carbon was found to be robust and densely adhering to the substrate. After the second oxidation step in N 2 O carbon was “retracted” (oxidized) from the oxide‑carbon composite layer, resulting in an aesthetically pleasing, adherent white oxide layer. Finally, this two-step process, leading to robust white oxide layer formation, is show-cased on a biomedical demonstrator part for dental applications.