People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rocha, Alexandre Da Silva
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2021Laser remelting of WC-CoCr surface coated by HVOF: Effect on the tribological properties and energy efficiencycitations
- 2019Surface processing to improve the fatigue strength of bainitic steels - An overview
- 2018Comparative Analysis of the Friction and Microstructural Properties of WC-10Co-4Cr and Cr3C2-25NiCr Coatings Sprayed by High-Velocity Oxy-fuel (HVOF)
- 2018Optimizing Hot Forging Process Parameters of Hollow Parts Using Tubular and Cylindrical Workpiece: Numerical Analysis and Experimental Validation
- 2017Effects of tempering temperature on the microstructure and creep resistance of X22CrMoV12-1 steel used on steam turbine blades
Places of action
Organizations | Location | People |
---|
article
Laser remelting of WC-CoCr surface coated by HVOF: Effect on the tribological properties and energy efficiency
Abstract
n this article, the tribological behavior and energy efficiency of surfaces coated with WC-CoCr/HVOF were evaluated after a laser remelting process, using low and high laser energy densities, respectively, 33.3 and 150 J/mm2. The purpose of laser remelting was to adequately modify the microstructure of the coatings and promote better performance during surface sliding. Therefore, the microstructure, phase composition and microhardness of the coatings were investigated, and heat effect on the substrate. During dry and lubricated tribological tests, friction coefficient (COF), wear, and surface roughness also were evaluated. In the dry tests, friction, wear and heat dissipation energies were obtained, which were then correlated with the energy consumed by the tribometer. A HEPR-type biodegradable oil was used in the lubricated tests. The proper formation of W2C and Co3W3C, obtained for the lower energy density, increased the hardness, without weakening the material, while the CrC phase acted as an anti-wear barrier. Whereas for the high energy density, thermal decomposition produced fragile phases, which were easily removed from the matrix during the wear test. The sample tested in as-sprayed condition had a high adhesion and friction compared to the remelted samples. On the remelted surfaces, greater friction stability was obtained. The lower dry friction was not linked to the lower power consumption, a result which was then attributed to the higher heat dissipation from the surface during the tests. Finally, this study proposes a methodology for quantifying the efficiency of sliding surfaces and points to a sustainable solution for tribology.