People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Akhavan, Behnam
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Room-temperature sputter deposition of gold-colored TiN assisted by niobium bombardment from a bipolar HiPIMS sourcecitations
- 2021External magnetic field guiding in HiPIMS to control sp3fraction of tetrahedral amorphous carbon filmscitations
- 2021Noble gas control of diamond-like content and compressive stress in carbon films by arc-mixed mode high power impulse magnetron sputteringcitations
- 2020A multifaceted biomimetic interface to improve the longevity of orthopedic implants
- 2018Cellular responses to radical propagation from ion-implanted plasma polymer surfacescitations
- 2018Direct covalent attachment of silver nanoparticles on radical-rich plasma polymer films for antibacterial applications
- 2017Evolution of target condition in reactive HiPIMS as a function of duty cycle: An opportunity for refractive index gradingcitations
- 2017Evolution of target condition in reactive HiPIMS as a function of duty cycle: an opportunity for refractive index gradingcitations
- 2016Inhomogeneous growth of micrometer thick plasma polymerized filmscitations
Places of action
Organizations | Location | People |
---|
article
Noble gas control of diamond-like content and compressive stress in carbon films by arc-mixed mode high power impulse magnetron sputtering
Abstract
Conventional DC magnetron sputter deposition from a carbon target with argon as the sputtering gas is limited by a low deposition rate, and the resultant coatings have low diamond-like sp3 content. Here we study arc-mixed mode high power impulse magnetron sputtering (HiPIMS) of carbon using He, Ne, Ar, Xe and Kr gases and show an increase in deposition rate is achieved by using noble gases heavier than argon. On the other hand, a higher sp3 fraction is achieved by using noble gases lighter than argon. The higher deposition rate of the heavier noble gases is attributed to the higher sputtering yield and an earlier arc onset owing to their lower ionization potential. The higher sp3 fraction achieved by lighter noble gases is attributed to stress generation by knock-on collisions at the surface of the depositing film, in the absence of stress relief created by large thermal spike volumes. When neon was used as the sputtering gas, the inert gas content was higher than for any other noble gas. Our results lead to opportunities for grading the sp3 content with depth simply by changing the gas composition, allowing fabrication of buried conductive channels in ta-C, Metal-Insulator-Metal (MIM) (low sp3/high sp3/low sp3) structures and biosensor films (high sp3/low sp3).