Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zaman, Shakil Bin

  • Google
  • 4
  • 5
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023The effect of heating stage parameters on AlSi coating microstructure and fracture at high temperatures1citations
  • 2021Investigating AlSi coating fracture at high temperatures using acoustic emission sensors19citations
  • 2021Numerical and experimental studies of AlSi coating microstructure and its fracture at high temperatures5citations
  • 2018Modeling crack initiation in Al-Si coating during heating/quenching phase of hot stamping processcitations

Places of action

Chart of shared publication
Hazrati, Javad
4 / 17 shared
Van Den Boogaard, Ton
4 / 135 shared
De Rooij, Matthijn
4 / 38 shared
Matthews, David
2 / 35 shared
Venema, Jenny
1 / 2 shared
Chart of publication period
2023
2021
2018

Co-Authors (by relevance)

  • Hazrati, Javad
  • Van Den Boogaard, Ton
  • De Rooij, Matthijn
  • Matthews, David
  • Venema, Jenny
OrganizationsLocationPeople

article

Investigating AlSi coating fracture at high temperatures using acoustic emission sensors

  • Matthews, David
  • Hazrati, Javad
  • Van Den Boogaard, Ton
  • De Rooij, Matthijn
  • Zaman, Shakil Bin
Abstract

<p>In this article, the fracture behavior of AlSi coating at elevated temperatures is investigated. During the heating stage, Fe−Al intermetallics and voids are formed, both of which define the fracture behavior of the AlSi coating layer. After heating, the effects of deformation temperature, strain level and strain rate on the fracture of AlSi coating is investigated, during deformation of the coated press hardening steel. For this purpose, tensile experiments are conducted at elevated temperatures. The experiments include heating the coated steel at 920 °C for 6 minutes, uniaxial tensile deformation at isothermal conditions (400−800 °C) and then quenching to room temperature. Acoustic emission (AE) sensors are incorporated to detect coating fracture at each stage. After quenching, the distribution of coating cracks and its micro-structure are examined via optical and scanning electron microscopy techniques, respectively. The results show that there is a strong correlation between AlSi coating fracture and the deformation temperature, macroscopic strain level and the output AE signals. According to the acoustic and optical measurements, the uniaxial tensile experiments at 400−700 °C show coating fracture: at 400 and 500 °C coating fracture is severe with spallation, while at 600 and 700 °C mode-I coating cracks are generated. However, at 800 °C no coating cracks are observed until 30% macroscopic strain. In conclusion, the experimental results demonstrate that the AlSi coating fracture is strongly dependent on the temperature and strain but not on the strain rate. Furthermore, the agreement between AE signals and optical images confirms that the AE sensors can be reliably used for in-situ detection of AlSi coating fracture during tensile experiments.</p>

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • experiment
  • crack
  • steel
  • acoustic emission
  • void
  • intermetallic
  • fracture behavior
  • quenching