People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Rooij, Matthijn
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (38/38 displayed)
- 2024Direct observation of the fracture behavior of the polyether ketone ketone (PEKK) spherulitescitations
- 2024The modified boundary layer mechanism for the release between polyimide film and poly(ether ketone ketone) thermoplasticscitations
- 2024The effect of highly elongated micro-contacts on rolling contact stress fieldcitations
- 2023Designer Adhesives for Tough and Durable Interfaces in High-Performance Ti-Carbon PEKK Hybrid Jointscitations
- 2023The effect of heating stage parameters on AlSi coating microstructure and fracture at high temperaturescitations
- 2023Microbubble on fiber method to determine the contact angle between steel substrates and highly viscous molten PEKK and PA 6citations
- 2022Experimental and numerical investigation of frictional behavior of carbon yarns for over-braiding conditions
- 2022Characterization of the water–titanium interaction and its effect on the adhesion of titanium-C/PEKK jointscitations
- 2022The role of process induced polymer morphology on the fracture toughness of titanium-PEKK interfacescitations
- 2021Investigating AlSi coating fracture at high temperatures using acoustic emission sensorscitations
- 2021Numerical and experimental studies of AlSi coating microstructure and its fracture at high temperaturescitations
- 2021Modeling boundary friction of coated sheets in sheet metal formingcitations
- 2021Effect of grit-blasting on the fracture toughness of hybrid titanium-thermoplastic composite jointscitations
- 2021Influence of the Polymer Interphase Structure on the Interaction between Metal and Semicrystalline Thermoplasticscitations
- 2021Understanding the generation of wear particles in cold rolling processescitations
- 2021Formation of Flat-on Lamellar Crystals in Absence of Nanoconfinementcitations
- 2021Mixed lubrication friction model including surface texture effects for sheet metal formingcitations
- 2020Experimental validation of contact models for cold-rolling processescitations
- 2020Characterization of yield criteria for zinc coated steel sheets using nano-indentation with knoop indentercitations
- 2020Semi-analytical contact model to determine the flattening behavior of coated sheets under normal loadcitations
- 2020Frictional characteristics of Fusion Deposition Modeling (FDM) manufactured surfacescitations
- 2020Analytical, numerical and experimental studies on ploughing behaviour in soft metallic coatingscitations
- 2019Laser metal deposition of vanadium-rich high speed steel: Microstructuraland high temperature wear characterizationcitations
- 2019Characterization of interfacial shear strength and its effect on ploughing behaviour in single-asperity slidingcitations
- 2019Wear characterization of multilayer laser cladded high speed steelscitations
- 2019Modelling of ploughing in a single-asperity sliding contact using material point methodcitations
- 2019Directed energy deposition and characterization of high-carbon high speed steelscitations
- 2018Wear characterization of thick laser cladded high speed steel coatings
- 2018Temperature dependent micromechanics-based friction model for cold stamping processescitations
- 2018Modeling crack initiation in Al-Si coating during heating/quenching phase of hot stamping process
- 2018Development and characterization of multilayer laser cladded high speed steelscitations
- 2017The effect of titanium surface treatment on the interfacial strength of titanium – Thermoplastic composite jointscitations
- 2014Frictional behavior of carbon fiber towscitations
- 2012Effect of temperature on friction and wear behavior of CuO-zirconia compositescitations
- 2011High-Temperature Tribological and Self-Lubricating Behavior of Copper Oxide-Doped Y-TZP Composite Sliding Against Aluminacitations
- 2011Friction in Forming of UD Compositescitations
- 2011Friction in Forming of UD Composites
- 2004Friction and wear studies on nylon-6/SiO2 nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Investigating AlSi coating fracture at high temperatures using acoustic emission sensors
Abstract
<p>In this article, the fracture behavior of AlSi coating at elevated temperatures is investigated. During the heating stage, Fe−Al intermetallics and voids are formed, both of which define the fracture behavior of the AlSi coating layer. After heating, the effects of deformation temperature, strain level and strain rate on the fracture of AlSi coating is investigated, during deformation of the coated press hardening steel. For this purpose, tensile experiments are conducted at elevated temperatures. The experiments include heating the coated steel at 920 °C for 6 minutes, uniaxial tensile deformation at isothermal conditions (400−800 °C) and then quenching to room temperature. Acoustic emission (AE) sensors are incorporated to detect coating fracture at each stage. After quenching, the distribution of coating cracks and its micro-structure are examined via optical and scanning electron microscopy techniques, respectively. The results show that there is a strong correlation between AlSi coating fracture and the deformation temperature, macroscopic strain level and the output AE signals. According to the acoustic and optical measurements, the uniaxial tensile experiments at 400−700 °C show coating fracture: at 400 and 500 °C coating fracture is severe with spallation, while at 600 and 700 °C mode-I coating cracks are generated. However, at 800 °C no coating cracks are observed until 30% macroscopic strain. In conclusion, the experimental results demonstrate that the AlSi coating fracture is strongly dependent on the temperature and strain but not on the strain rate. Furthermore, the agreement between AE signals and optical images confirms that the AE sensors can be reliably used for in-situ detection of AlSi coating fracture during tensile experiments.</p>