Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lee, Seunghwan

  • Google
  • 4
  • 12
  • 149

University of Leeds

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021A promising laser nitriding method for the design of next generation orthopaedic implants: Cytotoxicity and antibacterial performance of titanium nitride (TiN) wear nano-particles, and enhanced wear properties of laser-nitrided Ti6Al4V surfaces32citations
  • 2021Low friction thermoplastic polyurethane coatings imparted by surface segregation of amphiphilic block copolymers20citations
  • 2017Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering97citations
  • 2013Feasibility of bovine submaxillary mucin (BSM) films as biomimetic coating for polymeric biomaterialscitations

Places of action

Chart of shared publication
Hussain, Issam
1 / 3 shared
Carson, Louise
2 / 7 shared
Quinn, James
1 / 2 shared
Chan, Chi-Wai
2 / 11 shared
Smith, Graham C.
2 / 14 shared
Jeong, Seonghyeon
1 / 5 shared
Røn, Troels
1 / 1 shared
Jankova, Katja Jankova
1 / 10 shared
Javakhishvili, Irakli
1 / 11 shared
Morelli, Alessio
1 / 9 shared
Pakkanen, Kirsi I.
1 / 1 shared
Madsen, Jan Busk
1 / 1 shared
Chart of publication period
2021
2017
2013

Co-Authors (by relevance)

  • Hussain, Issam
  • Carson, Louise
  • Quinn, James
  • Chan, Chi-Wai
  • Smith, Graham C.
  • Jeong, Seonghyeon
  • Røn, Troels
  • Jankova, Katja Jankova
  • Javakhishvili, Irakli
  • Morelli, Alessio
  • Pakkanen, Kirsi I.
  • Madsen, Jan Busk
OrganizationsLocationPeople

article

A promising laser nitriding method for the design of next generation orthopaedic implants: Cytotoxicity and antibacterial performance of titanium nitride (TiN) wear nano-particles, and enhanced wear properties of laser-nitrided Ti6Al4V surfaces

  • Hussain, Issam
  • Carson, Louise
  • Quinn, James
  • Chan, Chi-Wai
  • Smith, Graham C.
  • Lee, Seunghwan
Abstract

In this study, fibre laser nitriding in open air was applied to the Ti6Al4V alloy in order to improve the wear resistance, thus minimising the generation of wear debris from the surfaces for load-bearing applications. The recent technological advancement to perform the laser nitriding process in open air allows the opportunity to surface-harden any curved and/or specific areas in the hip implants. The laser nitriding process was modulated between the pulsed mode and continuous wave (CW) mode by varying the duty cycle between 60% (pulsed) and 100% (CW). Our experimental investigations were divided into two stages in sequential order: Firstly, to create crack-free, homogenous and golden laser-nitrided surfaces by the proper selection of duty cycle. Secondly, it was to analyse the properties (both physical and chemical) of the wear debris as well as to evaluate their cytotoxicity and antibacterial performance. The laser-nitrided surfaces were characterized and tested using a variety of techniques, incl. Optical microscopy, SEM-EDX, XRD, surface roughness and Vickers hardness measurements, as well as tribological tests (i.e. ball-on-disk wear tests and DLS). The wear debris from the laser-nitrided surfaces (collected in the wear tests) were analysed using TEM, XPS and SEM-EDX. Their toxicity was evaluated using in-vitro cell culture with macrophages at two time points (24 h and 48 h). The antibacterial performance was tested in vitro against two of the most commonly implicated pathogens in orthopaedic infection, namely Staphylococcus aureus and Escherichia coli for 24 h. Our findings indicated that the wear resistance of the surfaces after laser nitriding was significantly improved and the amount of wear debris generated was also significantly reduced. The wear particles from the laser-nitrided surfaces were in the nano-sized scale range (0.01 μm to 0.04 μm or 10 nm to 40 nm). They were found to be less toxic towards RAW 264.7 macrophages, yet display antimicrobial properties against Staphylococcus aureus, when compared with the larger particles (1.5 μm in size) from the untreated surfaces. It is envisioned that successful fabrication of the non-toxic and highly wear-resistant TiN layer in Ti6Al4V using the open-air laser nitriding technique can enable progress towards the development of metal-on-metal (MoM) hip implants fully made of Ti-based alloys.

Topics
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • laser emission spectroscopy
  • crack
  • wear resistance
  • wear test
  • nitride
  • hardness
  • transmission electron microscopy
  • titanium
  • Energy-dispersive X-ray spectroscopy
  • optical microscopy
  • toxicity
  • tin
  • hot isostatic pressing
  • dynamic light scattering