People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schipper, Dirk J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Characterization of yield criteria for zinc coated steel sheets using nano-indentation with knoop indentercitations
- 2020Analytical, numerical and experimental studies on ploughing behaviour in soft metallic coatingscitations
- 2019Characterization of interfacial shear strength and its effect on ploughing behaviour in single-asperity slidingcitations
- 2019Modelling of ploughing in a single-asperity sliding contact using material point methodcitations
- 2012Investigating the influence of sand particle properties on abrasive wear behaviourcitations
- 2012Effect of temperature on friction and wear behavior of CuO-zirconia compositescitations
- 2011High-Temperature Tribological and Self-Lubricating Behavior of Copper Oxide-Doped Y-TZP Composite Sliding Against Aluminacitations
- 2009Dry-sliding self-lubricating ceramics: CuO doped 3Y-TZPcitations
- 2007Effect of Microstructure on the Tribological and Mechanical Properties of CuO-Doped 3Y-TZP Ceramicscitations
- 2004Friction behaviour of solid oxide lubricants as second phase in alpha-Al2O3 and stabilised ZrO2 compositescitations
Places of action
Organizations | Location | People |
---|
article
Characterization of yield criteria for zinc coated steel sheets using nano-indentation with knoop indenter
Abstract
<p>An indentation based method to characterize the yield locus for steel sheets is developed and implemented. Knoop hardness based indentation experiments have been performed on the surface as well as on the cross sections of an uncoated steel sheet to obtain the corresponding yield locus in the deviatoric and plane-stress situation. Stress ratios following the indenter's geometry are used to plot the yield locus from indentation data. The stress ratios have been corrected for the anisotropy of the material by an optimization algorithm. Points are then plotted in the plane-stress plane using the corrected stress ratios, the strain increment vectors and indentation hardness data. The parameters for the Hill's quadratic yield criteria are obtained from the indentation data based on a curve fitted yield locus. The results obtained using nano-indentation have been compared with those obtained from the standard characterization tests for steel sheet and shown to have good agreement. The method is also applied to the yield locus characterization of zinc coatings on steel sheet for multi-scale modelling of friction in deep drawing.</p>