Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Szymkiewicz, Krzysztof

  • Google
  • 4
  • 7
  • 57

Cracow University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021(Ti,Al)O2 Whiskers Grown during Glow Discharge Nitriding of Ti-6Al-7Nb Alloy4citations
  • 2020Effect of nitriding conditions of Ti6Al7Nb on microstructure of TiN surface layer25citations
  • 2020TEM investigations of active screen plasma nitrided Ti6Al4V and Ti6Al7Nb alloys16citations
  • 2019TEM studies of low temperature cathode-plasma nitrided Ti6Al7Nb alloy12citations

Places of action

Chart of shared publication
Pohrelyuk, Iryna
1 / 5 shared
Wierzchoń, Tadeusz
3 / 56 shared
Tarnowski, Michał
3 / 20 shared
Maj, Łukasz
3 / 5 shared
Tkachuk, Oleh
1 / 2 shared
Morgiel, Jerzy
3 / 23 shared
Pomorska, Małgorzata
2 / 3 shared
Chart of publication period
2021
2020
2019

Co-Authors (by relevance)

  • Pohrelyuk, Iryna
  • Wierzchoń, Tadeusz
  • Tarnowski, Michał
  • Maj, Łukasz
  • Tkachuk, Oleh
  • Morgiel, Jerzy
  • Pomorska, Małgorzata
OrganizationsLocationPeople

article

TEM studies of low temperature cathode-plasma nitrided Ti6Al7Nb alloy

  • Wierzchoń, Tadeusz
  • Szymkiewicz, Krzysztof
  • Tarnowski, Michał
  • Maj, Łukasz
  • Morgiel, Jerzy
Abstract

The Ti6Al7Nb alloy has been elaborated as a substitute for Ti6Al4V alloy especially for applications leading to its direct contact with human body fluids as the former totally eliminates the carcinogenic vanadium present in the latter. The Ti6Al7Nb presents so much needed high specific strength, but its aluminum addition is also harmful and will have to be taken care of. Nitriding could improve wear resistance of these alloys and form a diffusion barrier at least at first stage of their use. However, knowledge of phase composition of near surface area of Ti6Al7Nb after such treatment is still limited. Therefore, these experiments were planned to describe the effect of the plasma nitriding of Ti6Al7Nb alloy performed at 680 °C and 740 °C for 6 h. The transmission electron microscopy observations revealed that the plasma nitriding of this alloy performed at both of specified temperatures allows to produce a zone consisting of only three layers i.e. δ-TiN, α″-Ti martensite and (α-Ti + Ti3Al) phases. The only difference between both treatments was that plasma nitriding at 740 °C caused a porosity of upper part of the δ-TiN layer, while the one formed at 680 °C was only slightly thinner, but fully dense. Penetration of the nitrogen into sub-surface areas during plasma nitriding of Ti6Al7Nb alloy pushes down both the aluminum and niobium deep into the substrate freeing the near surface β-Ti from alloying additions. It allows to transform the latter into α″-Ti martensite during cooling down. The last layer in the nitrided zone was found to be formed by a mixture of α-Ti and Ti3Al phases.

Topics
  • impedance spectroscopy
  • surface
  • phase
  • experiment
  • aluminium
  • wear resistance
  • Nitrogen
  • strength
  • transmission electron microscopy
  • porosity
  • tin
  • vanadium
  • niobium